Explaining anomalies detected by autoencoders using Shapley Additive Explanations

被引:174
作者
Antwarg, Liat [1 ]
Miller, Ronnie Mindlin [1 ]
Shapira, Bracha [1 ]
Rokach, Lior [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Informat & Software Syst Engn, Beer Sheva, Israel
关键词
Explainable black-box models; XAI; Autoencoder; Shapley values; SHAP; Anomaly detection; NETWORK;
D O I
10.1016/j.eswa.2021.115736
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases in order to find anomalies. Most outlier detection algorithms output a score for each instance in the database. The top-k most intense outliers are returned to the user for further inspection; however, the manual validation of results becomes challenging without justification or additional clues. An explanation of why an instance is anomalous enables the experts to focus their investigation on the most important anomalies and may increase their trust in the algorithm. Recently, a game theory-based framework known as SHapley Additive exPlanations (SHAP) was shown to be effective in explaining various supervised learning models. In this paper, we propose a method that uses Kernel SHAP to explain anomalies detected by an autoencoder, which is an unsupervised model. The proposed explanation method aims to provide a comprehensive explanation to the experts by focusing on the connection between the features with high reconstruction error and the features that are most important in terms of their affect on the reconstruction error. We propose a black-box explanation method, because it has the advantage of being able to explain any autoencoder without being aware of the exact architecture of the autoencoder model. The proposed explanation method extracts and visually depicts both features that contribute the most to the anomaly and those that offset it. An expert evaluation using real-world data demonstrates the usefulness of the proposed method in helping domain experts better understand the anomalies. Our evaluation of the explanation method, in which a "perfect"autoencoder is used as the ground truth, shows that the proposed method explains anomalies correctly, using the exact features, and evaluation on real-data demonstrates that (1) our explanation model, which uses SHAP, is more robust than the Local Interpretable Model-agnostic Explanations (LIME) method, and (2) the explanations our method provides are more effective at reducing the anomaly score than other methods.
引用
收藏
页数:14
相关论文
共 70 条
[1]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[2]  
Aggarwal C. C., 2015, Data Mining, P237
[3]  
Alvarez-Melis D, 2018, ADV NEUR IN, V31
[4]  
Amarasinghe K, 2018, C HUM SYST INTERACT, P311, DOI 10.1109/HSI.2018.8430788
[5]  
[Anonymous], 2015, Technical Report
[6]  
[Anonymous], 2013, INSTANCE SELECTION C
[7]   Drebin: Effective and Explainable Detection of Android Malware in Your Pocket [J].
Arp, Daniel ;
Spreitzenbarth, Michael ;
Huebner, Malte ;
Gascon, Hugo ;
Rieck, Konrad .
21ST ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2014), 2014,
[8]   A review of instance selection methods [J].
Arturo Olvera-Lopez, J. ;
Ariel Carrasco-Ochoa, J. ;
Francisco Martinez-Trinidad, J. ;
Kittler, Josef .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 34 (02) :133-143
[9]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[10]  
Ben-Gal I, 2005, DATA MINING AND KNOWLEDGE DISCOVERY HANDBOOK, P131, DOI 10.1007/0-387-25465-X_7