Equivariant Tamagawa numbers, fitting ideals and Iwasawa theory

被引:11
作者
Bley, W
Burns, D
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
中国国家自然科学基金;
关键词
Chinburg's invariants; Galois module theory; values of motivic L-functions; Tate motives; absolutely Abelian fields;
D O I
10.1023/A:1017591827879
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L/K be a finite Galois extension of number fields of group G. In [4] the second named author used complexes arising from etale cohomology of the constant sheaf bb Z to define a canonical element T Omega (L/K) of the relative algebraic K-group K-0(Z[G], R). It was shown that the Stark and Strong Stark Conjectures for L/K can be reinterpreted in terms of T Omega (L/K), and that the Equivariant Tamagawa Number Conjecture for the bb Q[G]-equivariant motive h(0)(Spec L) is equivalent to the vanishing of T Omega (L/K). In this paper we give a natural description of T Omega (L/K) in terms of finite G-modules and also, when G is Abelian, in terms of (first) Fitting ideals. By combining this description with techniques of Iwasawa theory we prove that T Omega (L/Q) vanishes for an interesting class of Abelian extensions L/Q.
引用
收藏
页码:213 / 247
页数:35
相关论文
共 36 条