Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution

被引:223
作者
Liu, Chengyin [1 ]
Huang, Hongwei [1 ]
Ye, Liqun [2 ]
Yu, Shixin [1 ]
Tian, Na [1 ]
Du, Xin [3 ]
Zhang, Tierui [4 ]
Zhang, Yihe [1 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Beijing 100083, Peoples R China
[2] Nanyang Normal Univ, Coll Chem & Pharmaceut Engn, Key Lab Ecol Secur Water Source Reg Midline Proje, Nanyang 473061, Peoples R China
[3] Univ Sci & Technol Beijing, Dept Chem & Biol Engn, Res Ctr Bioengn & Sensing Technol, Beijing 100083, Peoples R China
[4] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
关键词
Graphitic carbon nitride; Hollow mesoporous ultrathin tubes; Hydrogen production; CO2; reduction; Photocatalysis; GRAPHITIC CARBON NITRIDE; HYDROGEN EVOLUTION; VISIBLE-LIGHT; PHOTOREDOX CATALYSIS; WATER; FABRICATION; SEMICONDUCTORS; NANOSHEETS; NANOTUBES; SURFACE;
D O I
10.1016/j.nanoen.2017.10.031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-free graphitic carbon nitride (g-C3N4) has triggered huge interests for converting solar energy into fuels. However, direct-calcination derived bulk g-C3N4 always suffers from low surface area and high recombination of charge carriers, prompting attempts to foster g-C3N4 nano/microstructures to achieve high performance. Conventional routes, like templating method, always yields g-C3N4 with tedious morphology and requires posttreatment. Here we release the first report on development of horn-like hollow mesoporous ultrathin (HHMU) gC(3)N(4) tubes via first forming a horn-like Br-containing intermediate followed by further decomposition transformation under co-pyrolysis of melamine and substantial NH4Br. The multiple-superiorities achieved here (hollow/mesoporous/ultrathin/horn-like) allows g-C3N4 high surface area, drastically boosted bulk charge separation, carrier density and surface charge transfer efficiency. This advanced g-C3N4 thus casts outstanding photocatalytic performance for H-2 evolution with an apparent quantum efficiency (AQE) of 14.3% at 420 +/- 15 nm, far exceeding most of reported g-C3N4. HHMU g-C3N4 also delivers a strengthened photocatalytic CO2 reduction activity into CO and CH4. Selective photo-deposition results provide an in-depth insight into charge movement behavior and high photo-reactivity that the photo-generated electrons migrate to the outer shell and holes prefer to transfer onto the inner shell of HHMU g-C3N4 tubes, thus achieving efficient spatial anisotropic charge separation. The current study may furnish a reference towards developing efficient tactics for integrally advancing g-C3N4 for renewable energy generation, and disclose a new perspective into promoting charge separation via microstructure design.
引用
收藏
页码:738 / 748
页数:11
相关论文
共 48 条
[1]   Synthesis of carbon nitride nanotubes via a catalytic-assembly solvothermal route [J].
Cao, CB ;
Huang, FL ;
Cao, CT ;
Li, J ;
Zhu, H .
CHEMISTRY OF MATERIALS, 2004, 16 (25) :5213-5215
[2]   Merging Single-Atom-Dispersed Silver and Carbon Nitride to a Joint Electronic System via Copolymerization with Silver Tricyanomethanide [J].
Chen, Zupeng ;
Pronkin, Sergey ;
Fellinger, Tim -Patrick ;
Kailasam, Kamalakannan ;
Vile, Gianvito ;
Albani, Davide ;
Krumeich, Frank ;
Leary, Rowan ;
Barnard, Jon ;
Thomas, John Meurig ;
Perez-Ramirez, Javier ;
Antonietti, Markus ;
Dontsova, Dariya .
ACS NANO, 2016, 10 (03) :3166-3175
[3]   Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst [J].
Gao, Honglin ;
Yan, Shicheng ;
Wang, Jiajia ;
Huang, Yu An ;
Wang, Peng ;
Li, Zhaosheng ;
Zou, Zhigang .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (41) :18077-18084
[4]   High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity [J].
Gao, Jun ;
Zhou, Yong ;
Li, Zhaosheng ;
Yan, Shicheng ;
Wang, Nanyan ;
Zou, Zhigang .
NANOSCALE, 2012, 4 (12) :3687-3692
[5]   Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution [J].
Guo, Shien ;
Deng, Zhaopeng ;
Li, Mingxia ;
Jiang, Baojiang ;
Tian, Chungui ;
Pan, Qingjiang ;
Fu, Honggang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (05) :1830-1834
[6]   Atomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution [J].
Han, Qing ;
Wang, Bing ;
Gao, Jian ;
Cheng, Zhihua ;
Zhao, Yang ;
Zhang, Zhipan ;
Qu, Liangti .
ACS NANO, 2016, 10 (02) :2745-2751
[7]  
Hill JC, 2015, NAT MATER, V14, P1150, DOI [10.1038/nmat4408, 10.1038/NMAT4408]
[8]   N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries [J].
Hou, Yang ;
Li, Jianyang ;
Wen, Zhenhai ;
Cui, Shumao ;
Yuan, Chris ;
Chen, Junhong .
NANO ENERGY, 2014, 8 :157-164
[9]   Fabrication of Multiple Heterojunctions with Tunable Visible-Light-Active Photocatalytic Reactivity in BiOBr-BiOl Full-Range Composites Based on Microstructure Modulation and Band Structures [J].
Huang, Hongwei ;
Han, Xu ;
Li, Xiaowei ;
Wang, Shichao ;
Chu, Paul K. ;
Zhang, Yihe .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (01) :482-492
[10]   Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution [J].
Huang, Zhen-Feng ;
Song, Jiajia ;
Pan, Lun ;
Wang, Ziming ;
Zhang, Xueqiang ;
Zou, Ji-Jun ;
Mi, Wenbo ;
Zhang, Xiangwen ;
Wang, Li .
NANO ENERGY, 2015, 12 :646-656