Inviscid incompressible limits for rotating fluids

被引:9
作者
Caggio, Matteo [1 ]
Necasova, Sarka [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, CR-11567 Prague 1, Czech Republic
关键词
Compressible Navier-Stokes system; Rotating fluids; Incompressible limit; Inviscid limit; NAVIER-STOKES EQUATIONS; SUITABLE WEAK SOLUTIONS; COMPRESSIBLE FLUIDS; STRONG UNIQUENESS; EULER EQUATIONS; SYSTEM; EXISTENCE; DOMAINS; FLOWS;
D O I
10.1016/j.na.2017.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the inviscid incompressible limits of the rotating compressible NavierStokes system for a barotropic fluid. We show that the limit system is represented by the rotating incompressible Euler equation on the whole space. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 39 条
[1]  
[Anonymous], 2006, OXFORD LECT SERIES M
[2]  
Bardos C., 2016, CONT MATH RECENT ADV
[3]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[4]   On the energy inequality for weak solutions to the Navier-Stokes equations of compressible fluids on unbounded domains [J].
Dell'Oro, Filippo ;
Feireisl, Eduard .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 :136-148
[5]   Low Mach number limit of viscous compressible flows in the whole space [J].
Desjardins, B ;
Grenier, E .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1986) :2271-2279
[6]  
Falkovich G., 2011, FLUID MECH SHORT COU
[7]   Inviscid incompressible limits on expanding domains [J].
Feireis, Eduard ;
Necasova, Sarka ;
Sun, Yongzhong .
NONLINEARITY, 2014, 27 (10) :2465-2477
[8]   On the domain dependence of solutions to the compressible Navier-Stokes equations of a barotropic fluid [J].
Feireisl, E ;
Novotny, A ;
Petzeltová, H .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (12) :1045-1073
[9]  
Feireisl E, 2002, MATH BOHEM, V127, P203
[10]   On the Existence of Globally Defined Weak Solutions to the Navier-Stokes Equations [J].
Feireisl, Eduard ;
Novotny, Antonin ;
Petzeltova, Hana .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2001, 3 (04) :358-392