Scool: a new data storage format for single-cell Hi-C data

被引:2
作者
Wolff, Joachim [1 ]
Abdennur, Nezar [2 ]
Backofen, Rolf [1 ,3 ,4 ]
Gruening, Bjorn [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, D-79110 Freiburg, Germany
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Univ Freiburg, Signalling Res Ctr BIOSS, D-79104 Freiburg, Germany
[4] Univ Freiburg, Signalling Res Ctr CIBSS, D-79104 Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btaa924
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and pre-processing intensive, require long labour time and are often error-prone. Results: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support.
引用
收藏
页码:2053 / 2054
页数:2
相关论文
共 50 条
  • [41] scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders
    Liu, Tong
    Wang, Zheng
    [J]. GENES, 2022, 13 (06)
  • [42] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Takashi Nagano
    Yaniv Lubling
    Tim J. Stevens
    Stefan Schoenfelder
    Eitan Yaffe
    Wendy Dean
    Ernest D. Laue
    Amos Tanay
    Peter Fraser
    [J]. Nature, 2013, 502 : 59 - 64
  • [43] Single-cell Hi-C reveals cell-to-cell variability in chromosome structure
    Nagano, Takashi
    Lubling, Yaniv
    Stevens, Tim J.
    Schoenfelder, Stefan
    Yaffe, Eitan
    Dean, Wendy
    Laue, Ernest D.
    Tanay, Amos
    Fraser, Peter
    [J]. NATURE, 2013, 502 (7469) : 59 - +
  • [44] Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data
    Meng, Luming
    Wang, Chenxi
    Shi, Yi
    Luo, Qiong
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [45] scHiClassifier: a deep learning framework for cell type prediction by fusing multiple feature sets from single-cell Hi-C data
    Zhou, Xiangfei
    Wu, Hao
    [J]. BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [46] Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data
    Luming Meng
    Chenxi Wang
    Yi Shi
    Qiong Luo
    [J]. Nature Communications, 12
  • [47] Model-based imputation enables improved resolution for identifying differential chromatin contacts in single-cell Hi-C data
    Shokraneh, Neda
    Andrews, Megan
    Libbrecht, Maxwell
    [J]. MACHINE LEARNING IN COMPUTATIONAL BIOLOGY, VOL 240, 2023, 240
  • [48] Author Correction: Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    [J]. Nature Biotechnology, 2022, 40 (3) : 432 - 432
  • [49] Software tools for visualizing Hi-C data
    Galip Gürkan Yardımcı
    William Stafford Noble
    [J]. Genome Biology, 18
  • [50] Reconstruction of the chromatin 3D conformation from single cell Hi-C data
    Kos, Pavel I.
    Galitsyna, Aleksandra A.
    Ulianov, Sergey V.
    Gelfand, Mikhail S.
    Razin, Sergey V.
    Chertovich, Alexander V.
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2476 - 2476