Scool: a new data storage format for single-cell Hi-C data

被引:2
作者
Wolff, Joachim [1 ]
Abdennur, Nezar [2 ]
Backofen, Rolf [1 ,3 ,4 ]
Gruening, Bjorn [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, D-79110 Freiburg, Germany
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Univ Freiburg, Signalling Res Ctr BIOSS, D-79104 Freiburg, Germany
[4] Univ Freiburg, Signalling Res Ctr CIBSS, D-79104 Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btaa924
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and pre-processing intensive, require long labour time and are often error-prone. Results: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support.
引用
收藏
页码:2053 / 2054
页数:2
相关论文
共 50 条
  • [31] Comparison and critical assessment of single-cell Hi-C protocols
    Gridina, M.
    Taskina, A.
    Lagunov, T.
    Nurislamov, A.
    Kulikova, T.
    Krasikova, A.
    Fishman, V.
    HELIYON, 2022, 8 (10)
  • [32] Identifying TAD-like domains on single-cell Hi-C data by graph embedding and changepoint detection
    Liu, Erhu
    Lyu, Hongqiang
    Liu, Yuan
    Fu, Laiyi
    Cheng, Xiaoliang
    Yin, Xiaoran
    BIOINFORMATICS, 2024, 40 (03)
  • [33] Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D
    Zheng, Ye
    Shen, Siqi
    Keles, Sunduz
    GENOME BIOLOGY, 2022, 23 (01)
  • [34] Normalization and de-noising of single-cell Hi-C data with BandNorm and scVI-3D
    Ye Zheng
    Siqi Shen
    Sündüz Keleş
    Genome Biology, 23
  • [35] Capturing cell type-specific chromatin compartment patterns by applying topic modeling to single-cell Hi-C data
    Kim, Hyeon-Jin
    Ioshikhes, Ilya
    Bonora, Giancarlo
    Ramani, Vijay
    Liu, Jie
    Qiu, Ruolan
    Lee, Choli
    Hesson, Jennifer
    Ware, Carol B.
    Shendure, Jay
    Duan, Zhijun
    Noble, William Stafford
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (09)
  • [36] Single-cell Hi-C: how modeling can augment experiment?
    Mali, Samira
    Tolokh, Igor S.
    Sharakhov, Igor V.
    Onufriev, Alexey V.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 362A - 362A
  • [37] A mini-review of single-cell Hi-C embedding methods
    Ma, Rui
    Huang, Jingong
    Jiang, Tao
    Ma, Wenxiu
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 4027 - 4035
  • [38] scHi-CSim: a flexible simulator that generates high-fidelity single-cell Hi-C data for benchmarking
    Fan, Shichen
    Dang, Dachang
    Ye, Yusen
    Zhang, Shao-Wu
    Gao, Lin
    Zhang, Shihua
    JOURNAL OF MOLECULAR CELL BIOLOGY, 2023, 15 (01)
  • [39] A minimal Go-model for rebuilding whole genome structures from haploid single-cell Hi-C data
    Wettermann, S.
    Brems, M.
    Siebert, J. T.
    Vu, G. T.
    Stevens, T. J.
    Virnau, P.
    COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [40] SnapHiC-D: a computational pipeline to identify differential chromatin contacts from single-cell Hi-C data
    Lee, Lindsay
    Yu, Miao
    Li, Xiaoqi
    Zhu, Chenxu
    Zhang, Yanxiao
    Yu, Hongyu
    Chen, Ziyin
    Mishra, Shreya
    Ren, Bing
    Li, Yun
    Hu, Ming
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)