Scool: a new data storage format for single-cell Hi-C data

被引:2
|
作者
Wolff, Joachim [1 ]
Abdennur, Nezar [2 ]
Backofen, Rolf [1 ,3 ,4 ]
Gruening, Bjorn [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, D-79110 Freiburg, Germany
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Univ Freiburg, Signalling Res Ctr BIOSS, D-79104 Freiburg, Germany
[4] Univ Freiburg, Signalling Res Ctr CIBSS, D-79104 Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btaa924
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and pre-processing intensive, require long labour time and are often error-prone. Results: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support.
引用
收藏
页码:2053 / 2054
页数:2
相关论文
共 50 条
  • [21] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Miao Yu
    Armen Abnousi
    Yanxiao Zhang
    Guoqiang Li
    Lindsay Lee
    Ziyin Chen
    Rongxin Fang
    Taylor M. Lagler
    Yuchen Yang
    Jia Wen
    Quan Sun
    Yun Li
    Bing Ren
    Ming Hu
    Nature Methods, 2021, 18 : 1056 - 1059
  • [22] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Yu, Miao
    Abnousi, Armen
    Zhang, Yanxiao
    Li, Guoqiang
    Lee, Lindsay
    Chen, Ziyin
    Fang, Rongxin
    Lagler, Taylor M.
    Yang, Yuchen
    Wen, Jia
    Sun, Quan
    Li, Yun
    Ren, Bing
    Hu, Ming
    NATURE METHODS, 2021, 18 (09) : 1056 - +
  • [23] Deep neural network models for cell type prediction based on single-cell Hi-C data
    Zhou, Bing
    Liu, Quanzhong
    Wang, Meili
    Wu, Hao
    BMC GENOMICS, 2024, 22 (SUPPL 5):
  • [24] ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data
    Fan, Shichen
    Dang, Dachang
    Gao, Lin
    Zhang, Shihua
    ADVANCED SCIENCE, 2024, 11 (42)
  • [25] Bayesian Estimation of Three-Dimensional Chromosomal Structure from Single-Cell Hi-C Data
    Rosenthal, Michael
    Bryner, Darshan
    Huffer, Fred
    Evans, Shane
    Srivastava, Anuj
    Neretti, Nicola
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2019, 26 (11) : 1191 - 1202
  • [26] ScHiCAtt: Enhancing single-cell Hi-C data resolution using attention-based models
    Menon, Rohit
    Chowdhury, H. M. A. Mohit
    Oluwadare, Oluwatosin
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 978 - 991
  • [27] scHiCPTR: unsupervised pseudotime inference through dual graph refinement for single-cell Hi-C data
    Lyu, Hongqiang
    Liu, Erhu
    Wu, Zhifang
    Li, Yao
    Liu, Yuan
    Yin, Xiaoran
    BIOINFORMATICS, 2022, 38 (23) : 5151 - 5159
  • [28] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Zhang, Ruochi
    Zhou, Tianming
    Ma, Jian
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 254 - +
  • [29] Multiscale and integrative single-cell Hi-C analysis with Higashi
    Ruochi Zhang
    Tianming Zhou
    Jian Ma
    Nature Biotechnology, 2022, 40 : 254 - 261
  • [30] Comparison and critical assessment of single-cell Hi-C protocols
    Gridina, M.
    Taskina, A.
    Lagunov, T.
    Nurislamov, A.
    Kulikova, T.
    Krasikova, A.
    Fishman, V.
    HELIYON, 2022, 8 (10)