Scool: a new data storage format for single-cell Hi-C data

被引:2
|
作者
Wolff, Joachim [1 ]
Abdennur, Nezar [2 ]
Backofen, Rolf [1 ,3 ,4 ]
Gruening, Bjorn [1 ]
机构
[1] Univ Freiburg, Dept Comp Sci, Bioinformat Grp, D-79110 Freiburg, Germany
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Univ Freiburg, Signalling Res Ctr BIOSS, D-79104 Freiburg, Germany
[4] Univ Freiburg, Signalling Res Ctr CIBSS, D-79104 Freiburg, Germany
关键词
D O I
10.1093/bioinformatics/btaa924
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Single-cell Hi-C research currently lacks an efficient, easy to use and shareable data storage format. Recent studies have used a variety of sub-optimal solutions: publishing raw data only, text-based interaction matrices, or reusing established Hi-C storage formats for single interaction matrices. These approaches are storage and pre-processing intensive, require long labour time and are often error-prone. Results: The single-cell cooler file format (scool) provides an efficient, user-friendly and storage-saving approach for single-cell Hi-C data. It is a flavour of the established cooler format and guarantees stable API support.
引用
收藏
页码:2053 / 2054
页数:2
相关论文
共 50 条
  • [1] Scool: a new data storage format for single-cell Hi-C data (vol 2, btaa924, 2020)
    Wolff, Joachim
    Abdennur, Nezar
    Backofen, Rolf
    Gruning, Bjoern
    BIOINFORMATICS, 2021, 37 (09) : 1337 - 1337
  • [2] Unsupervised embedding of single-cell Hi-C data
    Liu, Jie
    Lin, Dejun
    Yardimci, Galip Gurkan
    Noble, William Stafford
    BIOINFORMATICS, 2018, 34 (13) : 96 - 104
  • [3] Single-Cell Hi-C Technologies and Computational Data Analysis
    Dautle, Madison A.
    Chen, Yong
    ADVANCED SCIENCE, 2025, 12 (09)
  • [4] Single-cell Hi-C data analysis: safety in numbers
    Galitsyna, Aleksandra A.
    Gelfand, Mikhail S.
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [5] GiniQC: a measure for quantifying noise in single-cell Hi-C data
    Horton, Connor A.
    Alver, Burak H.
    Park, Peter J.
    BIOINFORMATICS, 2020, 36 (09) : 2902 - 2904
  • [6] Advances in methods and applications of single-cell Hi-C data analysis
    Gong H.
    Ma F.
    Zhang X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (05): : 1033 - 1039
  • [7] scHiCTools: A computational toolbox for analyzing single-cell Hi-C data
    Li, Xinjun
    Feng, Fan
    Pu, Hongxi
    Leung, Wai Yan
    Liu, Jie
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (05)
  • [8] HiCDiff: single-cell Hi-C data denoising with diffusion models
    Wang, Yanli
    Cheng, Jianlin
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [9] scHiGex: predicting single-cell gene expression based on single-cell Hi-C data
    Shrestha, Bishal
    Siciliano, Andrew Jordan
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    NAR GENOMICS AND BIOINFORMATICS, 2025, 7 (01)
  • [10] scHiMe: predicting single-cell DNA methylation levels based on single-cell Hi-C data
    Zhu, Hao
    Liu, Tong
    Wang, Zheng
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)