The superconducting busbar system of Wendelstein 7-X

被引:6
|
作者
Stache, K [1 ]
Kerl, F [1 ]
Sapper, J [1 ]
Sombach, B [1 ]
Wegener, L [1 ]
机构
[1] Teilinst Greifswald, EURATOM Assoc, Max Planck Inst Plasmaphys, D-17491 Greifswald, Germany
关键词
Wendelstein; 7-X; busbars; superconducting coils; joints;
D O I
10.1016/S0920-3796(03)00255-2
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The superconducting magnet system of the stellarator Wendelstein 7-X (W7-X) consists of 50 non-planar and 20 planar coils grouped in five periodic modules. Ten coils of a given type of non-planar and planar coils will always be connected electrically in series with nominal currents ranging up to 18 kA. Because of the 5-fold symmetry five busbar systems are to be routed. Electrical connection of the busbar system will require 184 disconnectable joints with a resistance below 5 nOmega. The paper describes the design features of the busbar systems and their installation in the stellarator. Requirements for the design and qualification of the disconnectable joints will be pointed out. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1119 / 1123
页数:5
相关论文
共 50 条
  • [41] Wall conditioning for Wendelstein 7-X by glow discharge
    Spring, A
    Brakel, R
    Niedermeyer, H
    FUSION ENGINEERING AND DESIGN, 2003, 66-68 : 371 - 375
  • [42] Implementation and First Operational Experiences With the High Voltage In-Service-Tests on the Superconducting Magnet System of Wendelstein 7-X
    Fuellenbach, Frank
    Rummel, Thomas
    Risse, Konrad
    Moennich, Thomas
    Bosch, Hans-Stephan
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2020, 30 (04)
  • [43] Hydraulic analysis of the Wendelstein 7-X cooling loops
    Smirnow, M.
    Orozco, G.
    Boscary, J.
    Peacock, A.
    FUSION ENGINEERING AND DESIGN, 2013, 88 (9-10) : 1764 - 1767
  • [44] Manufacture of the vacuum vessels and the ports of Wendelstein 7-X
    Reich, J
    Gardebrecht, W
    Hein, B
    Missal, B
    Tretter, J
    Wanner, A
    Leher, F
    Langone, S
    FUSION ENGINEERING AND DESIGN, 2005, 75-79 : 565 - 569
  • [45] Repair processes of Wendelstein 7-X target modules
    Junghanns, P.
    Boscary, J.
    Ehrke, G.
    Mendelevitch, B.
    Pichlmair, A.
    Springer, J.
    Stadler, R.
    FUSION ENGINEERING AND DESIGN, 2019, 146 : 1166 - 1170
  • [46] Physics Programme for Initial Operation of Wendelstein 7-X
    Bosch, H. -S.
    Dinklage, A.
    Klinger, T.
    Wolf, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2010, 50 (08) : 687 - 694
  • [47] Distributed editing of experiment programs at Wendelstein 7-X
    Spring, Anett
    Riemann, Heike
    Lewerentz, Marc
    FUSION ENGINEERING AND DESIGN, 2025, 214
  • [48] Plans for the first plasma operation of Wendelstein 7-X
    Pedersen, T. Sunn
    Andreeva, T.
    Bosch, H. -S.
    Bozhenkov, S.
    Effenberg, F.
    Endler, M.
    Feng, Y.
    Gates, D. A.
    Geiger, J.
    Hartmann, D.
    Hoelbe, H.
    Jakubowski, M.
    Koenig, R.
    Laqua, H. P.
    Lazerson, S.
    Otte, M.
    Preynas, M.
    Schmitz, O.
    Stange, T.
    Turkin, Y.
    NUCLEAR FUSION, 2015, 55 (12)
  • [49] Increasing the density in Wendelstein 7-X: benefits and limitations
    Fuchert, G.
    Brunner, K. J.
    Rahbarnia, K.
    Stange, T.
    Zhang, D.
    Baldzuhn, J.
    Bozhenkov, S. A.
    Beidler, C. D.
    Beurskens, M. N. A.
    Brezinsek, S.
    Burhenn, R.
    Damm, H.
    Dinklage, A.
    Feng, Y.
    Hacker, P.
    Hirsch, M.
    Kazakov, Y.
    Knauer, J.
    Langenberg, A.
    Laqua, H. P.
    Lazerson, S.
    Pablant, N. A.
    Pasch, E.
    Reimold, F.
    Pedersen, T. Sunn
    Scott, E. R.
    Warmer, F.
    Winters, V. R.
    Wolf, R. C.
    NUCLEAR FUSION, 2020, 60 (03)
  • [50] Data access and its implementation at Wendelstein 7-X
    Bluhm, T.
    Heimann, P.
    Hennig, Ch.
    Kroiss, H.
    Kuehner, G.
    Maier, J.
    Riemann, H.
    Zilker, M.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (2-3) : 387 - 392