Advances in developing HIV-1 viral load assays for resource-limited settings

被引:133
作者
Wang, ShuQi [2 ]
Xu, Feng [2 ]
Demirci, Utkan [1 ,2 ]
机构
[1] Harvard MIT Hlth Sci & Technol, Demirci Bioacoust MEMS Med BAMM Lab, Cambridge, MA 02139 USA
[2] Harvard Univ, Brigham & Womens Hosp, Dept Med,Ctr Biomed Engn, Demirci Bioacoust MEMS Med BAMM Lab,Med Sch, Boston, MA 02115 USA
关键词
HIV-1; Viral load; Resource-limited settings; Point-of-care; IMMUNODEFICIENCY-VIRUS TYPE-1; REVERSE-TRANSCRIPTASE ACTIVITY; ANTIRETROVIRAL TREATMENT FAILURE; NUCLEIC-ACID AMPLIFICATION; DISSOCIATED P24 ANTIGEN; SIGNAL-AMPLIFICATION; RNA; 3.0; MULTICENTER EVALUATION; QUANTITATIVE DETECTION; THERAPY FAILURE;
D O I
10.1016/j.biotechadv.2010.06.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Commercial HIV-1 RNA viral load assays have been routinely used in developed countries to monitor antiretroviral treatment (ART). However, these assays require expensive equipment and reagents, well-trained operators, and established laboratory infrastructure. These requirements restrict their use in resource-limited settings where people are most afflicted with the HIV-1 epidemic. Inexpensive alternatives such as the Ultrasensitive p24 assay, the reverse transcriptase (RT) assay and in-house reverse transcription quantitative polymerase chain reaction (RT-qPCR) have been developed. However, they are still time-consuming, technologically complex and inappropriate for decentralized laboratories as point-of-care (POC) tests. Recent advances in microfluidics and nanotechnology offer new strategies to develop low-cost, rapid, robust and simple HIV-1 viral load monitoring systems. We review state-of-the-art technologies used for HIV-1 viral load monitoring in both developed and developing settings. Emerging approaches based on microfluidics and nanotechnology, which have potential to be integrated into POC HIV-1 viral load assays, are also discussed. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:770 / 781
页数:12
相关论文
共 91 条
[1]  
*ABB, 2007, ABB REALTIME HIV 1 P
[2]   Rapid automated cell quantification on HIV microfluidic devices [J].
Alyassin, Mohamad A. ;
Moon, SangJun ;
Keles, Hasan O. ;
Manzur, Fahim ;
Lin, Richard L. ;
Haeggstrom, Edward ;
Kuritzkes, Daniel R. ;
Demirci, Utkan .
LAB ON A CHIP, 2009, 9 (23) :3364-3369
[3]  
[Anonymous], 2008, REP GLOB AIDS EP
[4]  
[Anonymous], 2006, ANT THER HIV INF AD
[5]   Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples [J].
Bhattacharyya, A. ;
Klapperich, C. M. .
BIOMEDICAL MICRODEVICES, 2007, 9 (02) :245-251
[6]   Field evaluation of an improved assay using a heat-dissociated p24 antigen for adults mainly infected with HIV-1CRF02_AG strains in Cote d'Ivoire, West Africa [J].
Bonard, D ;
Rouet, F ;
Toni, TA ;
Minga, A ;
Huet, C ;
Ekouévi, DK ;
Dabis, F ;
Salamon, R ;
Rouzioux, C .
JAIDS-JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, 2003, 34 (03) :267-273
[7]   Simple monitoring of antiretroviral therapy with a signal-amplification-boosted HIV-1 p24 antigen assay with heat-denatured plasma [J].
Boni, J ;
Opravil, M ;
Tomasik, Z ;
Rothen, M ;
Bisset, L ;
Grob, PJ ;
Luthy, R ;
Schupbach, J .
AIDS, 1997, 11 (06) :F47-F52
[8]   HIV viral load monitoring in resource-limited regions: Optional or necessary? [J].
Calmy, Alexandra ;
Ford, Nathan ;
Hirschel, Bernard ;
Reynolds, Steven J. ;
Lynen, Lut ;
Goemaere, Eric ;
de la Vega, Felipe Garcia ;
Perrin, Luc ;
Rodriguez, William .
CLINICAL INFECTIOUS DISEASES, 2007, 44 (01) :128-134
[9]   Quantification of human immunodeficiency virus type 1 RNA from dried plasma spots collected on filter paper [J].
Cassol, S ;
Gill, MJ ;
Pilon, R ;
Cormier, M ;
Voigt, RF ;
Willoughby, B ;
Forbes, J .
JOURNAL OF CLINICAL MICROBIOLOGY, 1997, 35 (11) :2795-2801
[10]  
Chang Denison, 2006, Expert Rev Anti Infect Ther, V4, P565, DOI 10.1586/14787210.4.4.565