InstanceFlow: Visualizing the Evolution of Classifier Confusion at the Instance Level

被引:13
作者
Puehringer, Michael [1 ]
Hinterreiter, Andreas [1 ,2 ]
Streit, Marc [1 ]
机构
[1] Johannes Kepler Univ Linz, Linz, Austria
[2] Imperial Coll London, London, England
来源
2020 IEEE VISUALIZATION CONFERENCE - SHORT PAPERS (VIS 2020) | 2020年
关键词
Classification; Performance analysis; Time series visualization;
D O I
10.1109/VIS47514.2020.00065
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Classification is one of the most important supervised machine learning tasks. During the training of a classification model, the training instances are fed to the model multiple times (during multiple epochs) in order to iteratively improve classification performance. The increasing complexity of models has led to a growing demand to make them interpretable through visualization. Existing approaches mostly focus on the visual analysis of the final model performance after training and are often limited to aggregate performance measures. In this paper, we introduce InstanceFlow, a novel dual-view visualization tool that allows users to analyze the learning behavior of classifiers over time at the instance-level. A Sankey diagram visualizes the flow of instances throughout epochs, with on-demand detailed glyphs and traces for individual instances. A tabular view allows users to locate interesting instances by ranking and filtering. Thus, InstanceFlow bridges the gap between class-level and instance-level performance evaluation while enabling users to perform a full temporal analysis of the training process.
引用
收藏
页码:291 / 295
页数:5
相关论文
共 24 条
[1]   Do Convolutional Neural Networks Learn Class Hierarchy? [J].
Alsallakh, Bilal ;
Jourabloo, Amin ;
Ye, Mao ;
Liu, Xiaoming ;
Ren, Liu .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) :152-162
[2]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[3]  
Bruckner Daniel, 2014, ML O SCOPE DIAGNOSTI, DOI DOI 10.21236/ADA605112
[4]  
Chae J, 2017, WORKSHOP VISUAL ANAL, P6
[5]   A survey of surveys on the use of visualization for interpreting machine learning models [J].
Chatzimparmpas, Angelos ;
Martins, Rafael M. ;
Jusufi, Ilir ;
Kerren, Andreas .
INFORMATION VISUALIZATION, 2020, 19 (03) :207-233
[6]  
Chung S., 2016, P ACM SIGKDD WORKSH
[7]   An experimental comparison of performance measures for classification [J].
Ferri, C. ;
Hernandez-Orallo, J. ;
Modroiu, R. .
PATTERN RECOGNITION LETTERS, 2009, 30 (01) :27-38
[8]   Taggle: Combining overview and details in tabular data visualizations [J].
Furmanova, Katarina ;
Gratzl, Samuel ;
Stitz, Holger ;
Zichner, Thomas ;
Jaresova, Miroslava ;
Lex, Alexander ;
Streit, Marc .
INFORMATION VISUALIZATION, 2020, 19 (02) :114-136
[9]   LineUp: Visual Analysis of Multi-Attribute Rankings [J].
Gratzl, Samuel ;
Lex, Alexander ;
Gehlenborg, Nils ;
Pfister, Hanspeter ;
Streit, Marc .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) :2277-2286
[10]   ConfusionFlow: A Model-Agnostic Visualization for Temporal Analysis of Classifier Confusion [J].
Hinterreiter, Andreas ;
Ruch, Peter ;
Stitz, Holger ;
Ennemoser, Martin ;
Bernard, Jurgen ;
Strobelt, Hendrik ;
Streit, Marc .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (02) :1222-1236