Filter pruning with a feature map entropy importance criterion for convolution neural networks compressing

被引:30
|
作者
Wang, Jielei [1 ]
Jiang, Ting [2 ]
Cui, Zongyong [1 ]
Cao, Zongjie [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu 611731, Peoples R China
[2] Megvii Technol Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; Model compression; Model pruning; Model acceleration; Entropy; GRADIENT;
D O I
10.1016/j.neucom.2021.07.034
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Neural Networks (DNN) has made significant progress in recent years. However, its high computing and storage costs make it challenging to apply on resource-limited platforms or edge computation scenarios. Recent studies have shown that model pruning is an effective method to solve this problem. Typically, the model pruning method is a three-stage pipeline: training, pruning, and fine-tuning. In this work, a novel structured pruning method for Convolutional Neural Networks (CNN) compression is proposed, where filter-level redundant weights are pruned according to entropy importance criteria (termed FPEI). In short, the FPEI criterion, which works in the stage of pruning, defines the importance of the filter according to the entropy of feature maps. If a feature map contains very little information, it should not contribute much to the whole network. By removing these uninformative feature maps, their corresponding filters in the current layer and kernels in the next layer can be removed simultaneously. Consequently, the computing and storage costs are significantly reduced. Moreover, because our method cannot show the advantages of the existing ResNet pruning strategy, we propose a dimensionality reduction (DR) pruning strategy for ResNet structured networks. Experiments on several datasets demonstrate that our method is effective. In the experiment about the VGG-16 model on the SVHN dataset, we removed 91.31% of the parameters, from 14.73M to 1.28M, achieving a 63.77% reduction in the FLOPs, from 313.4M to 113.5M, and 1.73 times speedups of model inference. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 54
页数:14
相关论文
共 39 条
  • [1] Using Feature Entropy to Guide Filter Pruning for Efficient Convolutional Networks
    Li, Yun
    Wang, Luyang
    Peng, Sifan
    Kumar, Aakash
    Yin, Baoqun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 263 - 274
  • [2] Filter Pruning via Feature Discrimination in Deep Neural Networks
    He, Zhiqiang
    Qian, Yaguan
    Wang, Yuqi
    Wang, Bin
    Guan, Xiaohui
    Gu, Zhaoquan
    Ling, Xiang
    Zeng, Shaoning
    Wang, Haijiang
    Zhou, Wujie
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 245 - 261
  • [3] FPC: Filter pruning via the contribution of output feature map for deep convolutional neural networks acceleration
    Chen, Yanming
    Wen, Xiang
    Zhang, Yiwen
    He, Qiang
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [4] Filter Pruning via Measuring Feature Map Information
    Shao, Linsong
    Zuo, Haorui
    Zhang, Jianlin
    Xu, Zhiyong
    Yao, Jinzhen
    Wang, Zhixing
    Li, Hong
    SENSORS, 2021, 21 (19)
  • [5] Entropy-based pruning method for convolutional neural networks
    Hur, Cheonghwan
    Kang, Sanggil
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (06): : 2950 - 2963
  • [6] Entropy-based pruning method for convolutional neural networks
    Cheonghwan Hur
    Sanggil Kang
    The Journal of Supercomputing, 2019, 75 : 2950 - 2963
  • [7] Convolutional neural network simplification via feature map pruning
    Zou, Junhua
    Rui, Ting
    Zhou, You
    Yang, Chengsong
    Zhang, Sai
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 70 : 950 - 958
  • [8] Pruning feature maps for efficient convolutional neural networks
    Guo, Xiao-ting
    Xie, Xin-shu
    Lang, Xun
    OPTIK, 2023, 281
  • [9] Filter pruning-based two-step feature map reconstruction
    Liang, Yongsheng
    Liu, Wei
    Yi, Shuangyan
    Yang, Huoxiang
    He, Zhenyu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1555 - 1563
  • [10] A Filter Rank Based Pruning Method for Convolutional Neural Networks
    Liu, Hao
    Guan, Zhenyu
    Lei, Peng
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1318 - 1322