Real Space-Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method

被引:2
|
作者
Elliott, Joshua D. [5 ]
Mosconi, Edoardo [1 ]
De Angelis, Filippo [1 ,2 ]
Ambrosetti, Alberto [3 ]
Umari, Paolo [3 ,4 ]
机构
[1] Ist CNR Sci & Technol Mol, I-06123 Perugia, Italy
[2] Ist Italiano Technol, CompuNet, I-16163 Genoa, Italy
[3] Univ Padua, Dipartimento Fis & Astron, Padua, Italy
[4] CNR, Ist Officina Mat, CNR IOM DEMOCRITOS, I-34136 Trieste, Italy
[5] Univ Manchester, Sch Chem Engn & Analyt Sci, Manchester, Lancs, England
基金
欧盟地平线“2020”;
关键词
DENSITY-FUNCTIONAL THEORY; SENSITIZED SOLAR-CELLS; ELECTRON INJECTION; EXCITED-STATES; TD-DFT; TIO2; EXCITATIONS; TECHNOLOGIES; SIMULATIONS; EFFICIENCY;
D O I
10.1021/acs.jpclett.1c01742
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a method for constructing localized excitations and simulating the real time dynamics of excitons at the Many-Body Perturbation Theory Bethe-Salpeter Equation level. We track, on the femto-seconds scale, electron injection from a photoexcited dye into a semiconducting slab. From the time-dependent many-body wave function we compute the spatial evolution of the electron and of the hole; full electron injection is attained within 5 fs. Time-resolved analysis of the electron density and electron-hole interaction energy hints at a two-step charge transfer mechanism through an intermediary partially injected state. We adopt the Von-Neumann entropy for analyzing how the electron and hole entangle. We find that the excitation of the dye-semiconductor model may be represented by a four-level system and register a decrease in entanglement upon electron injection. At full injection, the electron and the hole exhibit only a small degree of entanglement indicative of pure electron and hole states.
引用
收藏
页码:7261 / 7269
页数:9
相关论文
共 22 条
  • [1] Solving the Bethe-Salpeter equation in real frequencies at finite temperature
    Tupitsyn, I. S.
    V. Prokof'ev, N.
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [2] Subsystem-Based GW/Bethe-Salpeter Equation
    Toelle, Johannes
    Deilmann, Thorsten
    Rohlfing, Michael
    Neugebauer, Johannes
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (04) : 2186 - 2199
  • [3] GW method and Bethe-Salpeter equation for calculating electronic excitations
    Leng, Xia
    Jin, Fan
    Wei, Min
    Ma, Yuchen
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2016, 6 (05) : 532 - 550
  • [4] NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation
    Franzke, Yannick J.
    Holzer, Christof
    Mack, Fabian
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (02) : 1030 - 1045
  • [5] GW(Γ) method without the Bethe-Salpeter equation for photoabsorption energies of spin-polarized systems
    Isobe, Tomoharu
    Kuwahara, Riichi
    Ohno, Kaoru
    PHYSICAL REVIEW A, 2018, 97 (06)
  • [6] Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation
    Kammerlander, David
    Botti, Silvana
    Marques, Miguel A. L.
    Marini, Andrea
    Attaccalite, Claudio
    PHYSICAL REVIEW B, 2012, 86 (12):
  • [7] Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms
    Illobre, P. Grobas
    Marsili, M.
    Corni, S.
    Stener, M.
    Toffoli, D.
    Coccia, E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2021, 17 (10) : 6314 - 6329
  • [8] Ab initio simulations of x-ray emission spectroscopy with the GW plus Bethe-Salpeter equation method
    Aoki, Tsubasa
    Ohno, Kaoru
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [9] Dynamical second-order Bethe-Salpeter equation kernel: A method for electronic excitation beyond the adiabatic approximation
    Zhang, Du
    Steinmann, Stephan N.
    Yang, Weitao
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (15)
  • [10] Revisiting the Charge-Transfer States at Pentacene/C60Interfaces with the GW/Bethe-Salpeter Equation Approach
    Fujita, Takatoshi
    Noguchi, Yoshifumi
    Hoshi, Takeo
    MATERIALS, 2020, 13 (12)