Electron-hole recombination properties of In0.5Ga0.5As/GaAs quantum dot solar cells and the influence on the open circuit voltage

被引:43
作者
Jolley, Greg [1 ]
Lu, Hao Feng [1 ]
Fu, Lan [1 ]
Tan, Hark Hoe [1 ]
Jagadish, Chennupati [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
electron-hole recombination; gallium arsenide; III-V semiconductors; indium compounds; semiconductor quantum dots; solar cells; INTERMEDIATE BAND;
D O I
10.1063/1.3492836
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report on a detailed analysis of the temperature dependent electrical properties of In0.5Ga0.5As/GaAs quantum dot solar cells. The effects leading to a reduction in the open circuit voltage are found to be the thermal injection of carriers from the n and p-type layers into the depletion region where they recombine with carriers occupying quantum dot states due to a thermal distribution. The departure of the device studied here from an ideal intermediate band solar cell is discussed. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3492836]
引用
收藏
页数:3
相关论文
共 12 条
[1]   Carrier recombination effects in strain compensated quantum dot stacks embedded in solar cells [J].
Alonso-Alvarez, D. ;
Taboada, A. G. ;
Ripalda, J. M. ;
Alen, B. ;
Gonzalez, Y. ;
Gonzalez, L. ;
Garcia, J. M. ;
Briones, F. ;
Marti, A. ;
Luque, A. ;
Sanchez, A. M. ;
Molina, S. I. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[2]   Fabrication of InAs/GaAs quantum dot solar cells with enhanced photocurrent and without degradation of open circuit voltage [J].
Guimard, Denis ;
Morihara, Ryo ;
Bordel, Damien ;
Tanabe, Katsuaki ;
Wakayama, Yuki ;
Nishioka, Masao ;
Arakawa, Yasuhiko .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[3]   Effect of strain compensation on quantum dot enhanced GaAs solar cells [J].
Hubbard, S. M. ;
Cress, C. D. ;
Bailey, C. G. ;
Raffaelle, R. P. ;
Bailey, S. G. ;
Wilt, D. M. .
APPLIED PHYSICS LETTERS, 2008, 92 (12)
[4]   Improved device performance of InAs/GaAs quantum dot solar cells with GaP strain compensation layers [J].
Laghumavarapu, R. B. ;
El-Emawy, M. ;
Nuntawong, N. ;
Moscho, A. ;
Lester, L. F. ;
Huffaker, D. L. .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[5]   InGaAs quantum dots grown with GaP strain compensation layers [J].
Lever, P ;
Tan, HH ;
Jagadish, C .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5710-5714
[6]   Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels [J].
Luque, A ;
Marti, A .
PHYSICAL REVIEW LETTERS, 1997, 78 (26) :5014-5017
[7]   Quasi-drift diffusion model for the quantum dot intermediate band solar cell [J].
Martí, A ;
Cuadra, L ;
Luque, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (09) :1632-1639
[8]   Partial filling of a quantum dot intermediate band for solar cells [J].
Martí, A ;
Cuadra, L ;
Luque, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (10) :2394-2399
[9]   Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells [J].
Popescu, Voicu ;
Bester, Gabriel ;
Hanna, Mark C. ;
Norman, Andrew G. ;
Zunger, Alex .
PHYSICAL REVIEW B, 2008, 78 (20)
[10]   Photofilling of intermediate bands [J].
Strandberg, Rune ;
Reenaas, Turid Worren .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)