An experimental protocol to determine quality parameters of dry-cured loins using low-field Magnetic Resonance Imaging

被引:4
|
作者
Caballero, Daniel [1 ,2 ]
Rodriguez, Pablo G. [2 ]
Caro, Andres [2 ]
del Mar Avila, Maria [2 ]
Torres, Juan P. [2 ]
Antequera, Teresa [3 ]
Perez-Palacios, Trinidad [3 ]
机构
[1] Univ Copenhagen, Chemometr & Analyt Technol, Food Technol Dept, Fac Sci, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
[2] Univ Extremadura, Res Inst Meat & Meat Prod, Media Engn Grp, Avda Ciencias S-N, ES-10003 Caceres, Spain
[3] Univ Extremadura, Res Inst Meat & Meat Prod, Food Technol Dept, Avda Ciencias S-N, ES-10003 Caceres, Spain
关键词
Experimental protocol; Magnetic resonance imaging; Optimum procedures; Dry-cured loins; Quality parameters; SENSORY ATTRIBUTES; TEXTURE ANALYSIS; MRI; PREDICT; TRAITS; ALGORITHMS; FRACTALS; MEAT;
D O I
10.1016/j.jfoodeng.2021.110750
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of this study was to achieve an experimental protocol (EP) to determine quality characteristics of dry-cured loins non-destructively by using low-field (LF) Magnetic Resonance Imaging (MRI). The MRI procedure is composed of three main stages: MRI acquisition, MRI analysis (computer vision techniques) and data analysis (data mining methods). Two procedures have been implemented within a EP and validated with real samples from the meat industry (dry-cured loins, n = 100) by means of different quality measures. The validation results may indicate the use of both implemented procedures and the development of an EP to determine quality characteristics of loins by LF MRI-computer vision-data mining in a non-destructive way, with high accuracy and reducing the dispersion of the values. This brings the possibility of implementing this methodology in meat processing plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] B0-Shimming Methodology for Affordable and Compact Low-Field Magnetic Resonance Imaging Magnets
    Wenzel, Konstantin
    Alhamwey, Hazem
    O'Reilly, Tom
    Riemann, Layla Tabea
    Silemek, Berk
    Winter, Lukas
    FRONTIERS IN PHYSICS, 2021, 9
  • [22] DISTAL INTERPHALANGEAL ARTICULAR CARTILAGE ASSESSMENT USING LOW-FIELD MAGNETIC RESONANCE IMAGING
    Olive, Julien
    VETERINARY RADIOLOGY & ULTRASOUND, 2010, 51 (03) : 259 - 266
  • [23] Low-field magnetic resonance imaging: increased safety for pacemaker patients?
    Strach, Katharina
    Naehle, Claas Philip
    Muehlsteffen, Artur
    Hinz, Michael
    Bernstein, Adam
    Thomas, Daniel
    Linhart, Markus
    Meyer, Carsten
    Bitaraf, Sascha
    Schild, Hans
    Sommer, Torsten
    EUROPACE, 2010, 12 (07): : 952 - 960
  • [24] Discrimination of Water-injected Ground Meat Using Low-field Nuclear Magnetic Resonance and Magnetic Resonance Imaging
    Gai S.
    You J.
    Zhang X.
    Zhang Z.
    Liu D.
    Shipin Kexue/Food Science, 2020, 41 (22): : 289 - 294
  • [25] PROS AND CONS OF LOW-FIELD MAGNETIC RESONANCE IMAGING IN VETERINARY PRACTICE
    Konar, Martin
    Lang, Johann
    VETERINARY RADIOLOGY & ULTRASOUND, 2011, 52 (01) : S5 - S14
  • [26] Low-Field Magnetic Resonance Imaging Findings of the Fetlock Region of Nonracehorses
    Auth, Adel K.
    Hinnigan, Guy J.
    Smith, Meredith A.
    Owen, Kathryn R.
    JOURNAL OF EQUINE VETERINARY SCIENCE, 2024, 132
  • [27] Low-field magnetic resonance imaging of the canine middle and inner ear
    Kneissl, S
    Probst, A
    Konar, M
    VETERINARY RADIOLOGY & ULTRASOUND, 2004, 45 (06) : 520 - 522
  • [28] A Proposal of Gradient Coil Configuration for Low-Field Magnetic Resonance Imaging
    Fedotov, Alexander
    Pugovkin, Vladimir
    Burov, Denis
    Hurshkainen, Anna
    Mirabal, Carlos Cabal
    APPLIED MAGNETIC RESONANCE, 2024, 55 (08) : 767 - 774
  • [29] Comparison of high-field and low-field magnetic resonance imaging of stifle joint disorders in dogs
    Przeworski, A.
    Adamiak, Z.
    Glodek, J.
    POLISH JOURNAL OF VETERINARY SCIENCES, 2016, 19 (03): : 663 - 670
  • [30] Evaluation of processing mechanism in Astragali Radix by low-field nuclear magnetic resonance and magnetic resonance imaging
    Peng, Jie
    Ye, Lifang
    Wu, Mengmei
    Wu, Menghua
    Ma, Zhiguo
    Cao, Hui
    Zhang, Ying
    PLOS ONE, 2022, 17 (03):