An experimental protocol to determine quality parameters of dry-cured loins using low-field Magnetic Resonance Imaging

被引:4
|
作者
Caballero, Daniel [1 ,2 ]
Rodriguez, Pablo G. [2 ]
Caro, Andres [2 ]
del Mar Avila, Maria [2 ]
Torres, Juan P. [2 ]
Antequera, Teresa [3 ]
Perez-Palacios, Trinidad [3 ]
机构
[1] Univ Copenhagen, Chemometr & Analyt Technol, Food Technol Dept, Fac Sci, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
[2] Univ Extremadura, Res Inst Meat & Meat Prod, Media Engn Grp, Avda Ciencias S-N, ES-10003 Caceres, Spain
[3] Univ Extremadura, Res Inst Meat & Meat Prod, Food Technol Dept, Avda Ciencias S-N, ES-10003 Caceres, Spain
关键词
Experimental protocol; Magnetic resonance imaging; Optimum procedures; Dry-cured loins; Quality parameters; SENSORY ATTRIBUTES; TEXTURE ANALYSIS; MRI; PREDICT; TRAITS; ALGORITHMS; FRACTALS; MEAT;
D O I
10.1016/j.jfoodeng.2021.110750
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of this study was to achieve an experimental protocol (EP) to determine quality characteristics of dry-cured loins non-destructively by using low-field (LF) Magnetic Resonance Imaging (MRI). The MRI procedure is composed of three main stages: MRI acquisition, MRI analysis (computer vision techniques) and data analysis (data mining methods). Two procedures have been implemented within a EP and validated with real samples from the meat industry (dry-cured loins, n = 100) by means of different quality measures. The validation results may indicate the use of both implemented procedures and the development of an EP to determine quality characteristics of loins by LF MRI-computer vision-data mining in a non-destructive way, with high accuracy and reducing the dispersion of the values. This brings the possibility of implementing this methodology in meat processing plants.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Non-destructively Prediction of Quality Parameters of Dry-Cured Iberian Ham by Applying Computer Vision and Low-Field MRI
    Pedro Torres, Juan
    Avila, Mar
    Caro, Andres
    Perez-Palacios, Trinidad
    Caballero, Daniel
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 498 - 507
  • [2] Low-field magnetic resonance imaging using multiplicative regularization
    den Bouter, Merel de Leeuw
    van Gijzen, Martin
    Remis, Rob
    MAGNETIC RESONANCE IMAGING, 2021, 75 : 21 - 33
  • [3] Imaging of the lung using low-field magnetic resonance imaging
    Hinsen, Maximilian
    Heiss, Rafael
    Nagel, Armin M.
    Levy, Simon
    Uder, Michael
    Bickelhaupt, Sebastian
    May, Matthias S.
    ZEITSCHRIFT FUR PNEUMOLOGIE, 2024, : 29 - 37
  • [4] Imaging of the lung using low-field magnetic resonance imaging
    Hinsen, Maximilian
    Heiss, Rafael
    Nagel, Armin M.
    Levy, Simon
    Uder, Michael
    Bickelhaupt, Sebastian
    May, Matthias S.
    RADIOLOGE, 2022, 62 (05): : 418 - 428
  • [5] Undesired Gradients in Low-Field Magnetic Resonance Imaging
    Ullah, Rafi
    Anwar, Muhammad Sabieh
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2009, 34A (03) : 173 - 190
  • [6] Imaging of the musculoskeletal system using low-field magnetic resonance imaging
    Pogarell, Tobias
    May, Matthias S.
    Nagel, Armin M.
    Uder, Michael
    Heiss, Rafael
    RADIOLOGE, 2022, 62 (05): : 410 - 417
  • [7] Use of Magnetic Resonance Imaging for monitoring Parma dry-cured ham processing
    Fantazzini, P.
    Gombia, M.
    Schembri, P.
    Simoncini, N.
    Virgili, R.
    MEAT SCIENCE, 2009, 82 (02) : 219 - 227
  • [8] Application of quantitative magnetization transfer magnetic resonance imaging for characterization of dry-cured hams
    Bajd, Franci
    Skrlep, Martin
    Candek-Potokar, Marjeta
    Vidmar, Jernej
    Sersa, Igor
    MEAT SCIENCE, 2016, 122 : 109 - 118
  • [9] Low-field magnetic resonance imaging for implant dentistry
    Gray, CF
    Redpath, TW
    Smith, FW
    DENTOMAXILLOFACIAL RADIOLOGY, 1998, 27 (04) : 225 - 229
  • [10] A novel method for detection of internal quality of walnut kernels using low-field magnetic resonance imaging
    Qiu, Zhengjun
    Bian, Yongliang
    Wang, Fanyue
    Huang, Ting
    Wang, Zhiping
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 217