Generalized Integration Operators from Mixed-Norm to Zygmund-Type Spaces

被引:7
作者
Guo, Jian [1 ]
Liu, Yongmin [2 ]
机构
[1] Jiangsu Bldg Vocat & Tech Coll, Xuzhou 221116, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
关键词
Boundedness; Compactness; Generalized integration operators; Mixed-norm space; Zygmund-type space; BLOCH-TYPE SPACES; BERGMAN-TYPE SPACES; UNIT BALL; H-INFINITY; ANALYTIC-FUNCTIONS; HARDY-SPACES; S) SPACES; PRODUCTS; DIFFERENTIATION; POLYDISK;
D O I
10.1007/s40840-015-0204-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let phi be an analytic self-map of the unit disk D, H(D) the space of analytic functions on D, and g is an element of H( D). The boundedness and compactness of the generalized integration operator I-q,phi((n)) f (z) = integral(Z)(0) f(n) (phi(xi)g(xi)d xi, z is an element of D, from mixed-norm space to the Zygmund-type space, and the little Zygmund-type space are investigated in this article.
引用
收藏
页码:1043 / 1057
页数:15
相关论文
共 57 条
[1]  
Abkar A, 2012, B MALAYS MATH SCI SO, V35, P499
[2]  
[Anonymous], 2000, THEORY BERGMAN SPACE
[3]  
[Anonymous], J XUZHOU NORM U NAT
[4]  
[Anonymous], 2005, GRADUATE TEXT MATH
[5]  
Chang DC, 2003, TAIWAN J MATH, V7, P293
[6]   On some integral operators on the unit polydisk and the unit ball [J].
Chang, Der-Chen ;
Li, Songxiao ;
Stevic, Stevo .
TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05) :1251-1285
[7]   Composition operators on small spaces [J].
Choe, Boo Rim ;
Koo, Hyungwoon ;
Smith, Wayne .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (03) :357-380
[8]  
Colonna F, 2013, B MALAYS MATH SCI SO, V36, P1027
[9]  
Duren P.L., 1970, Pure and Applied Mathematics, V38, P74
[10]   GENERALIZED INTEGRATION OPERATORS BETWEEN BLOCH-TYPE SPACES AND F(p, q, s) SPACES [J].
He, Zhong Hua ;
Cao, Guangfu .
TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (04) :1211-1225