Additivity of Jordan multiplicative maps on Jordan operator algebras

被引:26
作者
An, RL [1 ]
Hou, JC
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[2] Shanxi Teachers Univ, Dept Math, Lin Fen 041004, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2006年 / 10卷 / 01期
关键词
Hilbert spaces; automorphisms; Jordan product;
D O I
10.11650/twjm/1500403798
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Hilbert space and N a nest in H. Denote by S-a(H) the Jordan ring of all self-adjoint operators on H and AlgN the nest algebra associated to M. We show that a bijective map Phi: S-a(H) -> S-a(H) satisfying (1) Phi(ABA) = Phi(A)Phi(B)Phi(A) for every pair of A, B, or (2) Phi(AB + BA) = Phi(A)Phi(B) + Phi(B)Phi(A) for every pair of A, B, or (3) Phi(1/2(AB + BA)) = 1/2(Phi(A)Phi(B)) + Phi(B)Phi(A)) for every pair of A, B must be additive, that is, a Jordan ring isomorphism. We also show that if a bijective map Phi : AlgN AlgN satisfies the Jordan multiplicativity of the form (2) or (3), then (P must be a Jordan isomorphism. Moreover, such Jordan multiplicative maps are characterized completely.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 17 条
[1]  
Aczel J., 1989, ENGLISH, V31, pxiii + 462
[2]  
An G., 2001, NE MATH J, V17, P438
[3]   Rank-preserving multiplicative maps on B(X) [J].
An, GM ;
Hou, JC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 342 (1-3) :59-78
[4]  
AN RL, IN PRESS CHINESE A B
[5]  
Davision K.R., 1980, NEST ALGEBRAS PITMAN, V191
[6]   Adjacency preserving maps on the space of self-adjoint operators [J].
Di, QH ;
Du, XF ;
Hou, JC .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2005, 26 (02) :305-314
[7]  
ERDOS J. A., 1968, J. London Math. Soc., V43, P391
[9]   Ring isomorphisms and linear or additive maps preserving zero products on nest algebras [J].
Hou, JC ;
Zhang, ML .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :343-360
[10]   Multiplicative maps on B(X) [J].
Hou, JC .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1998, 41 (04) :337-345