Does PM10 influence the prediction of PM2.5?

被引:2
|
作者
Choudhary, Rashmi [1 ]
Agarwal, Amit [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Civil Engn, Roorkee, Uttar Pradesh, India
来源
2022 SMART CITIES SYMPOSIUM PRAGUE (SCSP) | 2022年
关键词
air pollution; particulate matter; deep learning; prediction;
D O I
10.1109/SCSP54748.2022.9792544
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urbanization has led to a sharp increase in exposure to air pollutants in developing regions & the New Delhi capital of India is no exception to it. This paper proposes an approach where the Delhi region is divided into hexagonal bins of different sizes. Then the spatial interpolation is performed using Inverse distance weighting for pollutants and Ordinary Kriging for the meteorological parameters at the centroid of each bin. A hybrid deep learning architecture developed using convolutional neural network, and long short term memory is used for multivariate time series regression and prediction for PM2.5. Two different models are developed, one considering PM10 as a predictor variable and another without considering PM10. The results from both models are compared using various performance matrices, and experimental predicted results show that it improves prediction performance when PM10 is taken into account.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Influence of traffic on the elemental composition of PM10 and PM2.5 in Oporto region
    Slezakova, K.
    Reis, M. A.
    Pereira, M. C.
    Alvim-Ferraz, M. C.
    AIR POLLUTION XV, 2007, 101 : 59 - +
  • [2] Comparison of PM2.5 and PM10 monitors
    Williams, R
    Suggs, J
    Rodes, C
    Lawless, P
    Zweidinger, R
    Kwok, R
    Creason, J
    Sheldon, L
    JOURNAL OF EXPOSURE ANALYSIS AND ENVIRONMENTAL EPIDEMIOLOGY, 2000, 10 (05): : 497 - 505
  • [3] Enhancement of PM2.5 exposure estimation using PM10 observations
    Yuval
    Broday, David M.
    ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS, 2014, 16 (05) : 1094 - 1102
  • [4] Comparison of PM2.5 and PM10 monitors
    RON WILLIAMS
    JACK SUGGS
    CHARLES RODES
    PHIL LAWLESS
    ROY ZWEIDINGER
    RICHARD KWOK
    JOHN CREASON
    LINDA SHELDON
    Journal of Exposure Science & Environmental Epidemiology, 2000, 10 : 497 - 505
  • [5] Analysis of the Influence of Precipitation and Wind on PM2.5 and PM10 in the Atmosphere
    Liu, Zhen
    Shen, Luming
    Yan, Chengyu
    Du, Jianshuang
    Li, Yang
    Zhao, Hui
    ADVANCES IN METEOROLOGY, 2020, 2020
  • [6] PM2.5, PM10 and bronchiolitis severity: A cohort study
    Milani, Gregorio P.
    Cafora, Marco
    Favero, Chiara
    Luganini, Anna
    Carugno, Michele
    Lenzi, Erica
    Pistocchi, Anna
    Pinatel, Eva
    Pariota, Luigi
    Ferrari, Luca
    Bollati, Valentina
    PEDIATRIC ALLERGY AND IMMUNOLOGY, 2022, 33 (10)
  • [7] Overview and Seasonality of PM10 and PM2.5 in Guayaquil, Ecuador
    Moran-Zuloaga, Daniel
    Merchan-Merchan, Wilson
    Rodriguez-Caballero, Emilio
    Hernick, Philip
    Caceres, Julio
    Cornejo, Mauricio H.
    AEROSOL SCIENCE AND ENGINEERING, 2021, 5 (04) : 499 - 515
  • [8] Recursive neural network model for analysis and forecast of PM10 and PM2.5
    Biancofiore, Fabio
    Busilacchio, Marcella
    Verdecchia, Marco
    Tomassetti, Barbara
    Aruffo, Eleonora
    Bianco, Sebastiano
    Di Tommaso, Sinibaldo
    Colangeli, Carlo
    Rosatelli, Gianluigi
    Di Carlo, Piero
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (04) : 652 - 659
  • [9] Influence of tobacco smoke on carcinogenic PAH composition in indoor PM10 and PM2.5
    Slezakova, K.
    Castro, D.
    Pereira, M. C.
    Morais, S.
    Delerue-Matos, C.
    Alvim-Ferraz, M. C.
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (40) : 6376 - 6382
  • [10] The direct influence of ship traffic on atmospheric PM2.5, PM10 and PAH in Venice
    Contini, D.
    Gambaro, A.
    Belosi, F.
    De Pieri, S.
    Cairns, W. R. L.
    Donateo, A.
    Zanotto, E.
    Citron, M.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2011, 92 (09) : 2119 - 2129