GABAergic interneuron origin of schizophrenia pathophysiology

被引:350
作者
Nakazawa, Kazu [1 ]
Zsiros, Veronika [1 ]
Jiang, Zhihong [1 ]
Nakao, Kazuhito [1 ]
Kolata, Stefan [1 ]
Zhang, Shuqin [1 ]
Belforte, Juan E. [2 ]
机构
[1] NIMH, Unit Genet Cognit & Behav, US Dept HHS, Bethesda, MD 20892 USA
[2] Univ Buenos Aires, Sch Med, Dept Physiol, Syst Neurosci Grp, RA-1053 Buenos Aires, DF, Argentina
关键词
Schizophrenia; Fast-spiking interneuron; NMDA receptor hypofunction; Parvalbumin; Oxidative stress; Transgenic mice; GAMMA-AMINOBUTYRIC-ACID; PREFRONTAL CORTEX NEURONS; PARVALBUMIN-CONTAINING INTERNEURONS; CORTICAL PYRAMIDAL NEURONS; FAST-SPIKING INTERNEURONS; DENDRITIC SPINE DENSITY; METHYL-D-ASPARTATE; NMDA RECEPTORS; IMMUNOREACTIVE NEURONS; BIPOLAR DISORDER;
D O I
10.1016/j.neuropharm.2011.01.022
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hypofunction of N-methyl-D-aspartic acid-type glutamate receptors (NMDAR) induced by the systemic administration of NMDAR antagonists is well known to cause schizophrenia-like symptoms in otherwise healthy subjects. However, the brain areas or cell-types responsible for the emergence of these symptoms following NMDAR hypofunction remain largely unknown. One possibility, the so-called "GABAergic origin hypothesis," is that NMDAR hypofunction at GABAergic interneurons, in particular, is sufficient for schizophrenia-like effects. In one attempt to address this issue, transgenic mice were generated in which NMDARs were selectively deleted from cortical and hippocampal GABAergic interneurons, a majority of which were parvalbumin (PV)-positive. This manipulation triggered a constellation of phenotypes from molecular and physiological to behavioral-resembling characteristics of human schizophrenia. Based on these results, and in conjunction with previous literature, we argue that during development, NMDAR hypofunction at cortical, PV-positive, fast-spiking interneurons produces schizophrenia-like effects. This review summarizes the data demonstrating that in schizophrenia, GABAergic (particularly PV-positive) interneurons are disrupted. PV-positive interneurons, many of which display a fast-spiking firing pattern, are critical not only for tight temporal control of cortical inhibition but also for the generation of synchronous membrane-potential gamma-band oscillations. We therefore suggest that in schizophrenia the specific ability of fast-spiking interneurons to control and synchronize disparate cortical circuits is disrupted and that this disruption may underlie many of the schizophrenia symptoms. We further argue that the high vulnerability of corticolimbic fast-spiking interneurons to genetic predispositions and to early environmental insults-including excitotoxicity and oxidative stress-might help to explain their significant contribution to the development of schizophrenia. This article is part of a Special Issue entitled 'Schizophrenia'. Published by Elsevier Ltd.
引用
收藏
页码:1574 / 1583
页数:10
相关论文
共 169 条
[1]   Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders [J].
Akbarian, Schahram ;
Huang, Hsien-Sung .
BRAIN RESEARCH REVIEWS, 2006, 52 (02) :293-304
[2]   Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase [J].
Asada, H ;
Kawamura, Y ;
Maruyama, K ;
Kume, H ;
Ding, RG ;
Kanbara, N ;
Kuzume, H ;
Sanbo, M ;
Yagi, T ;
Obata, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (12) :6496-6499
[3]   Petilla terminology:: nomenclature of features of GABAergic interneurons of the cerebral cortex [J].
Ascoli, Giorgio A. ;
Alonso-Nanclares, Lidia ;
Anderson, Stewart A. ;
Barrionuevo, German ;
Benavides-Piccione, Ruth ;
Burkhalter, Andreas ;
Buzsaki, Gyoergy ;
Cauli, Bruno ;
DeFelipe, Javier ;
Fairen, Alfonso ;
Feldmeyer, Dirk ;
Fishell, Gord ;
Fregnac, Yves ;
Freund, Tamas F. ;
Gardner, Daniel ;
Gardner, Esther P. ;
Goldberg, Jesse H. ;
Helmstaedter, Moritz ;
Hestrin, Shaul ;
Karube, Fuyuki ;
Kisvarday, Zoltan F. ;
Lambolez, Bertrand ;
Lewis, David A. ;
Marin, Oscar ;
Markram, Henry ;
Munoz, Alberto ;
Packer, Adam ;
Petersen, Carl C. H. ;
Rockland, Kathleen S. ;
Rossier, Jean ;
Rudy, Bernardo ;
Somogyi, Peter ;
Staiger, Jochen F. ;
Tamas, Gabor ;
Thomson, Alex M. ;
Toledo-Rodriguez, Maria ;
Wang, Yun ;
West, David C. ;
Yuste, Rafael .
NATURE REVIEWS NEUROSCIENCE, 2008, 9 (07) :557-568
[4]   Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks [J].
Bartos, Marlene ;
Vida, Imre ;
Jonas, Peter .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (01) :45-56
[5]   Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase [J].
Behrens, M. Margarita ;
Ali, Sameh S. ;
Dao, Diep N. ;
Lucero, Jacinta ;
Shekhtman, Grigoriy ;
Quick, Kevin L. ;
Dugan, Laura L. .
SCIENCE, 2007, 318 (5856) :1645-1647
[6]  
Belforte J. E., 2011, ANIMAL MODELS SCHIZO
[7]   Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes [J].
Belforte, Juan E. ;
Zsiros, Veronika ;
Sklar, Elyse R. ;
Jiang, Zhihong ;
Yu, Gu ;
Li, Yuqing ;
Quinlan, Elizabeth M. ;
Nakazawa, Kazu .
NATURE NEUROSCIENCE, 2010, 13 (01) :76-U240
[8]   Autism as a disorder of neural information processing: directions for research and targets for therapy [J].
Belmonte, MK ;
Cook, EH ;
Anderson, GM ;
Rubenstein, JLR ;
Greenough, WT ;
Beckel-Mitchener, A ;
Courchesne, E ;
Boulanger, LM ;
Powell, SB ;
Levitt, PR ;
Perry, EK ;
Jiang, YH ;
DeLorey, TM ;
Tierney, E .
MOLECULAR PSYCHIATRY, 2004, 9 (07) :646-663
[9]   GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder [J].
Benes, FM ;
Berretta, S .
NEUROPSYCHOPHARMACOLOGY, 2001, 25 (01) :1-27
[10]  
BENES FM, 1991, ARCH GEN PSYCHIAT, V48, P996