Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes

被引:74
作者
Marcelino, Vanessa R. [1 ,2 ,3 ,4 ]
Wille, Michelle [5 ]
Hurt, Aeron C. [5 ]
Gonzalez-Acuna, Daniel [6 ]
Klaassen, Marcel [7 ]
Schlub, Timothy E. [8 ]
Eden, John-Sebastian [1 ,2 ,3 ,4 ]
Shi, Mang [1 ,2 ,4 ]
Iredell, Jonathan R. [1 ,2 ,3 ]
Sorrell, Tania C. [1 ,2 ,3 ]
Holmes, Edward C. [1 ,2 ,4 ]
机构
[1] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW 2006, Australia
[2] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia
[3] Westmead Inst Med Res, Westmead, NSW 2145, Australia
[4] Univ Sydney, Sch Life & Environm Sci, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[5] WHO Collaborating Ctr Reference & Res Influenza, Peter Doherty Inst Infect & Immun, Melbourne, Vic 3000, Australia
[6] Univ Concepcion, Lab Parasitos & Enfermedades Fauna Silvestre, Fac Ciencias Vet, Concepcion 3349001, Chile
[7] Deakin Univ, Ctr Integrat Ecol, Sch Life & Environm Sci, Geelong, Vic 3216, Australia
[8] Univ Sydney, Fac Med & Hlth, Sydney Sch Publ Hlth, Sydney, NSW 2006, Australia
基金
澳大利亚国家健康与医学研究理事会;
关键词
Meta-transcriptomics; Microbiome; Birds; Resistome; Antimicrobial resistance; Wastewater; ESCHERICHIA-COLI; GUT MICROBIOTA; ANTIMICROBIAL RESISTANCE; BETA-LACTAMASES; WILD BIRDS; BACTERIA; GULLS; PREVALENCE; ADAPTATION; EXPRESSION;
D O I
10.1186/s12915-019-0649-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Antibiotic resistance is rendering common bacterial infections untreatable. Wildlife can incorporate and disperse antibiotic-resistant bacteria in the environment, such as water systems, which in turn serve as reservoirs of resistance genes for human pathogens. Anthropogenic activity may contribute to the spread of bacterial resistance cycling through natural environments, including through the release of human waste, as sewage treatment only partially removes antibiotic-resistant bacteria. However, empirical data supporting these effects are currently limited. Here we used bulk RNA-sequencing (meta-transcriptomics) to assess the diversity and expression levels of functionally viable resistance genes in the gut microbiome of birds with aquatic habits in diverse locations. Results: We found antibiotic resistance genes in birds from all localities, from penguins in Antarctica to ducks in a wastewater treatment plant in Australia. Comparative analysis revealed that birds feeding at the wastewater treatment plant carried the greatest resistance gene burden, including genes typically associated with multidrug resistance plasmids as the aac(6)-Ib-cr gene. Differences in resistance gene burden also reflected aspects of bird ecology, taxonomy, and microbial function. Notably, ducks, which feed by dabbling, carried a higher abundance and diversity of resistance genes than turnstones, avocets, and penguins, which usually prey on more pristine waters. Conclusions: These transcriptome data suggest that human waste, even if it undergoes treatment, might contribute to the spread of antibiotic resistance genes to the wild. Differences in microbiome functioning across different bird lineages may also play a role in the antibiotic resistance burden carried by wild birds. In summary, we reveal the complex factors explaining the distribution of resistance genes and their exchange routes between humans and wildlife, and show that meta-transcriptomics is a valuable tool to access functional resistance genes in whole microbial communities.
引用
收藏
页数:11
相关论文
共 99 条
[1]   Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome [J].
Abubucker, Sahar ;
Segata, Nicola ;
Goll, Johannes ;
Schubert, Alyxandria M. ;
Izard, Jacques ;
Cantarel, Brandi L. ;
Rodriguez-Mueller, Beltran ;
Zucker, Jeremy ;
Thiagarajan, Mathangi ;
Henrissat, Bernard ;
White, Owen ;
Kelley, Scott T. ;
Methe, Barbara ;
Schloss, Patrick D. ;
Gevers, Dirk ;
Mitreva, Makedonka ;
Huttenhower, Curtis .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (06)
[2]   Acquisition and dissemination of cephalosporin-resistant E.coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis [J].
Ahlstrom, Christina A. ;
Bonnedahl, Jonas ;
Woksepp, Hanna ;
Hernandez, Jorge ;
Olsen, Bjorn ;
Ramey, Andrew M. .
SCIENTIFIC REPORTS, 2018, 8
[3]   Animal Migration and Infectious Disease Risk [J].
Altizer, Sonia ;
Bartel, Rebecca ;
Han, Barbara A. .
SCIENCE, 2011, 331 (6015) :296-302
[4]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[5]  
Arcangioli MA, 1999, FEMS MICROBIOL LETT, V174, P327, DOI 10.1016/S0378-1097(99)00161-5
[6]   Multidrug-Resistant Salmonella enterica 4,[5], 12: i:-Sequence Type 34, New South Wales, Australia, 2016-2017 [J].
Arnott, Alicia ;
Wang, Qinning ;
Bachmann, Nathan ;
Sadsad, Rosemarie ;
Biswas, Chayanika ;
Sotomayor, Cristina ;
Howard, Peter ;
Rockett, Rebecca ;
Wiklendt, Agnieszka ;
Iredell, Jon R. ;
Sintchenko, Vitali .
EMERGING INFECTIOUS DISEASES, 2018, 24 (04) :751-753
[7]   ESBL-producing Escherichia coli in Swedish gulls-A case of environmental pollution from humans? [J].
Atterby, Clara ;
Borjesson, Stefan ;
Ny, Sofia ;
Jarhult, Josef D. ;
Byfors, Sara ;
Bonnedahl, Jonas .
PLOS ONE, 2017, 12 (12)
[8]  
Atterby Clara, 2016, Infection Ecology & Epidemiology, V6, P32334, DOI 10.3402/iee.v6.32334
[9]   Co-selection of antibiotic and metal resistance [J].
Baker-Austin, C ;
Wright, MS ;
Stepanauskas, R ;
McArthur, JV .
TRENDS IN MICROBIOLOGY, 2006, 14 (04) :176-182
[10]   Superheat: An R Package for Creating Beautiful and Extendable Heatmaps for Visualizing Compi-x Data [J].
Barter, Rebecca L. ;
Yu, Bin .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (04) :910-922