The metallic means family and multifractal spectra

被引:58
作者
de Spinadel, VW [1 ]
机构
[1] Univ Buenos Aires, Fac Arquitecture Diseno & Urbanismo, Ctr Matemat & Diseno MAyDI, RA-11311602 Buenos Aires, DF, Argentina
关键词
Fibonacci sequences; Lucas numbers; hyperbolic geometry; Farey trees; multifractal spectra;
D O I
10.1016/S0362-546X(98)00123-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical study was conducted to show that it is possible to state a mathematical model for the analysis of fractal and multifractal spectra by bridging between continues fractions expansions, generalized secondary Fibonacci sequences, hyperbolic geometry, Fuchsian groups and some members of the family of metallic means family. Fractals are geometric or physical configurations with self-similarity. Multifractals are nontrivial structures that possess a spectrum of scaling indices, instead of the simple scaling structure shown in fractals.
引用
收藏
页码:721 / 745
页数:25
相关论文
共 19 条
[1]   MULTIFRACTAL SPECTRA AND HYPERBOLIC GEOMETRY [J].
CESARATTO, E ;
GRYNBERG, S ;
HANSEN, R ;
PIACQUADIO, M .
CHAOS SOLITONS & FRACTALS, 1995, 6 :75-82
[2]  
DE SPINADEL V. W., 1998, GOLDEN MEAN CHAOS
[3]   On characterization of the onset to chaos [J].
DeSpinadel, VW .
CHAOS SOLITONS & FRACTALS, 1997, 8 (10) :1631-1643
[4]  
DESPINADEL VW, 1996, ALGO MAS MATEMATICA
[5]  
DESPINADEL VW, 1996, MODULOR CORBUSIER AR
[6]  
GRYNBERG S, 1995, 251 I ARG MAT
[7]  
GRYNBERG S, 1995, REV UNION MATEMATICA, V39, P209
[8]  
Halsey T. C., 1987, Nuclear Physics B, Proceedings Supplements, V2, P501, DOI 10.1016/0920-5632(87)90036-3
[9]  
Hogatt V. E., 1969, FIBONACCI LUCAS NUMB
[10]  
KAPPRAFF J, 1996, NEXUS ARCHITECTURE M