Global stability of solutions to nonlinear wave equations

被引:13
作者
Yang, Shiwu [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WA, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 03期
关键词
Null condition; Semilinear wave equation; Global stability; 2 SPACE DIMENSIONS; GENERAL-RELATIVITY; EXTERIOR DOMAINS; MULTIPLE SPEEDS; MINKOWSKI SPACE; EXISTENCE; SYSTEMS; DECAY; TIME; 3D;
D O I
10.1007/s00029-014-0165-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of global stability of solutions to a class of semilinear wave equations with null condition in Minkowski space. We give sufficient conditions on the given solution, which guarantees stability. Our stability result can be reduced to a small data global existence result for a class of semilinear wave equations with linear terms , and quadratic terms where the functions , , decay rather weakly and the constants satisfy the null condition. We show the small data global existence result by using the new approach developed by Dafermos-Rodnianski. In particular, we prove the global stability result under weaker assumptions than those imposed by Alinhac (Indiana Univ Math J 58(6):2543-2574, 2009).
引用
收藏
页码:833 / 881
页数:49
相关论文
共 32 条
[21]   Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods [J].
Metcalfe, J ;
Sogge, CD .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :188-209
[22]   Global existence of solutions to multiple speed systems of quasilinear wave equations in exterior domains [J].
Metcalfe, J ;
Nakamura, M ;
Sogge, CD .
FORUM MATHEMATICUM, 2005, 17 (01) :133-168
[23]   Global existence of null-form wave equations in exterior domains [J].
Metcalfe, Jason ;
Sogge, Christopher D. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 256 (03) :521-549
[24]   Global parametrices and dispersive estimates for variable coefficient wave equations [J].
Metcalfe, Jason ;
Tataru, Daniel .
MATHEMATISCHE ANNALEN, 2012, 353 (04) :1183-1237
[25]   LIMITING AMPLITUDE PRINCIPLE [J].
MORAWETZ, CS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1962, 15 (03) :349-&
[26]   TIME DECAY FOR NONLINEAR KLEIN - GORDON EQUATION [J].
MORAWETZ, CS .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 306 (1486) :291-&
[27]   Global existence or systems of nonlinear wave equations in 3D with multiple speeds [J].
Sideris, TC ;
Tu, SY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (02) :477-488
[28]  
Sogge C.D., 2008, Lectures on Non-Linear Wave Equations
[29]  
Sogge CD, 2003, CONTEMP MATH, V320, P353
[30]   Angular regularity and Strichartz estimates for the wave equation [J].
Sterbenz, J ;
Rodnianski, I .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (04) :187-231