Global stability of solutions to nonlinear wave equations

被引:13
作者
Yang, Shiwu [1 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DPMMS, Cambridge CB3 0WA, England
来源
SELECTA MATHEMATICA-NEW SERIES | 2015年 / 21卷 / 03期
关键词
Null condition; Semilinear wave equation; Global stability; 2 SPACE DIMENSIONS; GENERAL-RELATIVITY; EXTERIOR DOMAINS; MULTIPLE SPEEDS; MINKOWSKI SPACE; EXISTENCE; SYSTEMS; DECAY; TIME; 3D;
D O I
10.1007/s00029-014-0165-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of global stability of solutions to a class of semilinear wave equations with null condition in Minkowski space. We give sufficient conditions on the given solution, which guarantees stability. Our stability result can be reduced to a small data global existence result for a class of semilinear wave equations with linear terms , and quadratic terms where the functions , , decay rather weakly and the constants satisfy the null condition. We show the small data global existence result by using the new approach developed by Dafermos-Rodnianski. In particular, we prove the global stability result under weaker assumptions than those imposed by Alinhac (Indiana Univ Math J 58(6):2543-2574, 2009).
引用
收藏
页码:833 / 881
页数:49
相关论文
共 32 条
[1]   Stability of Large Solutions to Quasilinear Wave Equations [J].
Alinhac, S. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (06) :2543-2574
[2]  
Bieri L, 2010, J DIFFER GEOM, V86, P17
[3]   GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS FOR SMALL INITIAL DATA [J].
CHRISTODOULOU, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :267-282
[4]  
Christodoulou D., 1993, PRINCETON MATH SERIE, V41
[5]   A NEW PHYSICAL-SPACE APPROACH TO DECAY FOR THE WAVE EQUATION WITH APPLICATIONS TO BLACK HOLE SPACETIMES [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, :421-+
[6]   The Red-Shift Effect and Radiation Decay on Black Hole Spacetimes [J].
Dafermos, Mihalis ;
Rodnianski, Igor .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (07) :859-919
[7]  
Gilbarg D., 2001, Classics in Mathematics
[8]   A Remark on the Almost Global Existence Theorems of Keel, Smith and Sogge [J].
Hidano, Kunio ;
Yokoyama, Kazuyoshi .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2005, 48 (01) :1-34
[9]  
Hormander Lars, 1997, LECT NONLINEAR HYPER, V26
[10]  
HUGHES TJR, 1977, ARCH RATION MECH AN, V63, P273, DOI 10.1007/BF00251584