Solid polymer electrolytes based on polysiloxane with anion-trapping boron moieties for all-solid-state lithium metal batteries

被引:17
作者
Hong, Dong Gi [1 ,2 ]
Baik, Ji-Hoon [3 ]
Kim, Sangwan [1 ,2 ]
Lee, Jong-Chan [1 ,2 ]
机构
[1] Seoul Natl Univ, Sch Chem & Biol Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Korea Res Inst Chem Technol, Interface Mat & Chem Engn Res Ctr, 141 Gajeong Ro, Daejeon 34114, South Korea
基金
新加坡国家研究基金会;
关键词
Solid polymer electrolytes; Boron; Anion-trapping; Lithium metal batteries; Lithium-ion transference number; ELECTROCHEMICAL PERFORMANCE; INTERFACIAL ENHANCEMENT; COMPOSITE ELECTROLYTES; TRANSFERENCE NUMBER; OXIDE) ELECTROLYTES; IONIC-CONDUCTIVITY; THERMAL-BEHAVIOR; DENDRITE GROWTH; NETWORK; FILLERS;
D O I
10.1016/j.polymer.2022.124517
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Cross-linked solid polymer electrolytes (SPEs) based on ion-conducting poly(ethylene glycol) (PEG), flexible polysiloxane, and anion-trapping boron cross-linker (BPC) were prepared via thiol-ene click reaction for lithium metal batteries. Various thermal and electrochemical properties of SPEs were systematically investigated by varying the content of BPC. Thermally stable free-standing SPE systems could be obtained due to the cross-linked structure, while relatively high ionic conductivity of about 1.3 x 10(-4) S cm(-1) at 60 C was obtained at the same time by the flexible polysiloxane moiety. The boron moiety in BPC could increase the lithium ion transference number compared to the corresponding boron-free SPE due to the anion-trapping capability of boron atom. The formation and growth of lithium dendrites were effectively suppressed by the anion-trapping capability and mechanically stable cross-linked structure of the SPE.
引用
收藏
页数:9
相关论文
共 84 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Gel Polymer Electrolytes Based on Polymerizable Lithium Salt and Poly(ethylene glycol) for Lithium Battery Applications [J].
Baik, Ji-Hoon ;
Kim, Sangwan ;
Hong, Dong Gi ;
Lee, Jong-Chan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (33) :29718-29724
[4]  
Baik JH, 2018, J IND ENG CHEM, V64, P453
[5]   Solid polymer electrolytes containing poly(ethylene glycol) and renewable cardanol moieties for all-solid-state rechargeable lithium batteries [J].
Baik, Ji-Hoon ;
Kim, Dong-Gyun ;
Shim, Jimin ;
Lee, Jin Hong ;
Choi, Yong-Seok ;
Lee, Jong-Chan .
POLYMER, 2016, 99 :704-712
[6]   Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries [J].
Castillo, Julen ;
Santiago, Alexander ;
Judez, Xabier ;
Garbayo, Inigo ;
Coca Clemente, Jose Antonio ;
Carmen Morant-Minana, Maria ;
Villaverde, Aitor ;
Antonio Gonzalez-Marcos, Jose ;
Zhang, Heng ;
Armand, Michel ;
Li, Chunmei .
CHEMISTRY OF MATERIALS, 2021, 33 (22) :8812-8821
[7]   Boron-containing single-ion conducting polymer electrolyte for dendrite-free lithium metal batteries [J].
Chen, Guangping ;
Niu, Chaoqun ;
Liao, Xiaoxue ;
Chen, Yubing ;
Shang, Wenyan ;
Du, Jie ;
Chen, Yong .
SOLID STATE IONICS, 2020, 349
[8]   Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition [J].
Chen, Wei ;
Hu, Yin ;
Lv, Weiqiang ;
Lei, Tianyu ;
Wang, Xianfu ;
Li, Zhenghan ;
Zhang, Miao ;
Huang, Jianwen ;
Du, Xinchuan ;
Yan, Yichao ;
He, Weidong ;
Liu, Chen ;
Liao, Min ;
Zhang, Wanli ;
Xiong, Jie ;
Yan, Chenglin .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte [J].
Choi, NS ;
Lee, YM ;
Seol, W ;
Lee, JA ;
Park, JK .
SOLID STATE IONICS, 2004, 172 (1-4) :19-24
[10]   Interfacial enhancement between lithium electrode and polymer electrolytes [J].
Choi, NS ;
Lee, YM ;
Park, JH ;
Park, JK .
JOURNAL OF POWER SOURCES, 2003, 119 :610-616