CHARACTERIZATIONS OF JORDAN DERIVATIONS ON STRONGLY DOUBLE TRIANGLE SUBSPACE LATTICE ALGEBRAS

被引:6
作者
Chen, Yun-He [1 ]
Li, Jian-Kui [1 ]
机构
[1] E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
关键词
derivation; Jordan derivation; subspace lattice; REFLEXIVE LATTICES;
D O I
10.1017/S0004972711002449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D be a strongly double triangle subspace lattice on a nonzero complex reflexive Banach space X and let delta : Alg D -> Alg D be a linear mapping. We show that delta is Jordan derivable at zero, that is, delta(AB + BA) = delta(A)B + A delta(B) + delta(B)A + B delta(A) whenever AB + BA = 0 if and only if delta has the form delta(A) = tau(A) + lambda A for some derivation tau and some scalar lambda. We also show that if the dimension of X is greater than 2, then delta satisfies delta(AB + BA) = delta(A)B + A delta(B) + delta(B)A + B delta(A) whenever AB = 0 if and only if delta is a derivation.
引用
收藏
页码:300 / 309
页数:10
相关论文
共 9 条
[1]   Maps characterized by action on zero products [J].
Chebotar, MA ;
Ke, WF ;
Lee, PH .
PACIFIC JOURNAL OF MATHEMATICS, 2004, 216 (02) :217-228
[2]  
HALMOS PR, 1971, J LOND MATH SOC, V4, P257
[3]   Additive maps derivable or Jordan derivable at zero point on nest algebras [J].
Jiao, Meiyan ;
Hou, Jinchuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2984-2994
[4]   Characterisations of derivations on some operator algebras [J].
Jing, W ;
Lu, SJ ;
Li, PT .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (02) :227-232
[5]  
LAMBROU MS, 1992, J LOND MATH SOC, V45, P153
[6]   NON-REFLEXIVE DOUBLE TRIANGLES [J].
LONGSTAFF, WE .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1983, 35 (DEC) :349-356
[7]   STRONGLY REFLEXIVE LATTICES [J].
LONGSTAFF, WE .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 11 (OCT) :491-498
[8]   Derivations and local derivations on strongly double triangle subspace lattice algebras [J].
Pang Yongfeng ;
Yang Wei .
LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (07) :855-862
[9]   Jordan all-derivable points in the algebra of all upper triangular matrices [J].
Zhao, Sha ;
Zhu, Jun .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (11-12) :1922-1938