PATCHING AND THE COMPLETED HOMOLOGY OF LOCALLY SYMMETRIC SPACES

被引:8
作者
Gee, Toby [1 ]
Newton, James [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Galois representations; locally symmetric spaces; p-adic local Langlands; ADMISSIBLE REPRESENTATIONS; MODULAR-REPRESENTATIONS; POTENTIAL AUTOMORPHY; ORDINARY PARTS; COHOMOLOGY; POINTS; ALGEBRAS; DENSITY; DEPTH;
D O I
10.1017/S1474748020000158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under an assumption on the existence of p-adic Galois representations, we carry out Taylor-Wiles patching (in the derived category) for the completed homology of the locally symmetric spaces associated with GL(n) over a number field. We use our construction, and some new results in non-commutative algebra, to show that standard conjectures on completed homology imply 'big R = big U' theorems in situations where one cannot hope to appeal to the Zariski density of classical points (in contrast to all previous results of this kind). In the case where n = 2 and p splits completely in the number field, we relate our construction to the p-adic local Langlands correspondence for GL(2)(Q(p)).
引用
收藏
页码:395 / 458
页数:64
相关论文
共 65 条
[1]  
Allen P. B., 2018, ARXIV181209999MATHNT
[2]   ON AUTOMORPHIC POINTS IN POLARIZED DEFORMATION RINGS [J].
Allen, Patrick B. .
AMERICAN JOURNAL OF MATHEMATICS, 2019, 141 (01) :119-167
[3]  
Ardakov K., 2006, DOC MATH, V4, P7
[4]  
Ardakov K, 2007, T AM MATH SOC, V359, P1499
[5]   Potential automorphy and change of weight [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David ;
Taylor, Richard .
ANNALS OF MATHEMATICS, 2014, 179 (02) :501-609
[6]   Serre weights for rank two unitary groups [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
MATHEMATISCHE ANNALEN, 2013, 356 (04) :1551-1598
[7]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[8]   IRREDUCIBLE MODULAR-REPRESENTATIONS OF GL2 OF A LOCAL-FIELD [J].
BARTHEL, L ;
LIVNE, R .
DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) :261-292
[9]   On the density of modular points in universal deformation spaces [J].
Böckle, G .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (05) :985-1007
[10]  
BOKSTEDT M, 1993, COMPOS MATH, V86, P209