The reduced basis method for the electric field integral equation

被引:48
作者
Fares, M.
Hesthaven, J. S. [2 ]
Maday, Y. [3 ]
Stamm, B. [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[3] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
基金
美国国家科学基金会;
关键词
Reduced basis method; Scattering problems; RCS-computations; Boundary Element Method; PARTIAL-DIFFERENTIAL-EQUATIONS; MAXWELLS EQUATIONS; INTERPOLATION METHOD; LIPSCHITZ POLYHEDRA; BASIS APPROXIMATION; ERROR ESTIMATION; OUTPUT BOUNDS; TRACES; POINTS; SHAPE;
D O I
10.1016/j.jcp.2011.03.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:5532 / 5555
页数:24
相关论文
共 41 条
[1]   AUTOMATIC CHOICE OF GLOBAL SHAPE FUNCTIONS IN STRUCTURAL-ANALYSIS [J].
ALMROTH, BO ;
STERN, P ;
BROGAN, FA .
AIAA JOURNAL, 1978, 16 (05) :525-528
[2]  
[Anonymous], 1977, MATH ASPECTS FINITE
[3]   Parametric families of reduced finite element models. Theory and applications [J].
Balmes, E .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1996, 10 (04) :381-394
[4]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[5]   ON THE REDUCED BASIS METHOD [J].
BARRETT, A ;
REDDIEN, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1995, 75 (07) :543-549
[6]   The electric field integral equation on Lipschitz screens: definitions and numerical approximation [J].
Buffa, A ;
Christiansen, SH .
NUMERISCHE MATHEMATIK, 2003, 94 (02) :229-267
[7]   On traces for H(curl, Ω) in Lipschitz domains [J].
Buffa, A ;
Costabel, M ;
Sheen, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (02) :845-867
[8]  
Buffa A, 2001, MATH METHOD APPL SCI, V24, P31, DOI 10.1002/1099-1476(20010110)24:1<31::AID-MMA193>3.0.CO
[9]  
2-X
[10]  
Buffa A, 2001, MATH METHOD APPL SCI, V24, P9, DOI 10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO