Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity

被引:115
作者
Hamel, Francois [1 ]
机构
[1] Univ Aix Marseille 3, LATP, Fac Sci & Tech, F-13397 Marseille 20, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2008年 / 89卷 / 04期
关键词
D O I
10.1016/j.matpur.2007.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove various qualitative properties of pulsating traveling fronts in periodic media, for reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov type or general monostable nonlinearities. Besides monotonicity, the main part of the paper is devoted to the exponential behavior of the fronts when they approach their unstable limiting state. In the general monostable case, the logarithmic equivalent of the fronts is shown and for noncritical speeds, the decay rate is the same as in the KPP case. These results also generalize the known results in the homogeneous case or in the case when the equation is invariant by translation along the direction of propagation. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:355 / 399
页数:45
相关论文
共 53 条
[1]  
[Anonymous], 1937, B MOSCOW U MATH MECH, DOI DOI 10.1007/978-94-011-3030-1_38
[2]  
BAGES M, 2007, THESIS
[3]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS OF A FLAME PROPAGATION MODEL [J].
BERESTYCKI, H ;
LARROUTUROU, B ;
LIONS, PL .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :33-49
[4]   Analysis of the periodically fragmented environment model: II - biological invasions and pulsating travelling fronts [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (08) :1101-1146
[5]   Analysis of the periodically fragmented environment model: I - Species persistence [J].
Berestycki, H ;
Hamel, F ;
Roques, L .
JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) :75-113
[6]  
Berestycki H, 2005, J EUR MATH SOC, V7, P173
[7]   Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena [J].
Berestycki, H ;
Hamel, F ;
Nadirashvili, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (02) :451-480
[8]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[9]   Front propagation in periodic excitable media [J].
Berestycki, H ;
Hamel, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (08) :949-1032
[10]  
Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI DOI 10.1007/BF01244896