Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium-Sulfur Batteries

被引:193
作者
Sun, Zixu [1 ]
Vijay, Sudarshan [2 ]
Heenen, Hendrik H. [2 ]
Eng, Alex Yong Sheng [3 ]
Tu, Wenguang [1 ]
Zhao, Yunxing [4 ]
Koh, See Wee [1 ]
Gao, Pingqi [5 ]
Seh, Zhi Wei [3 ]
Chan, Karen [2 ]
Li, Hong [1 ,6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Tech Univ Denmark, Catalysis Theory Ctr, Dept Phys, DK-2820 Lyngby, Denmark
[3] ASTAR, Inst Mat Res & Engn, 2 Fusionopolis Way, Singapore 138634, Singapore
[4] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[5] Sun Yat Sen Univ, Sch Mat, Guangzhou 510275, Peoples R China
[6] Nanyang Technol Univ, Sch Elect & Elect Engn, Ctr Micro Nanoelect NOVITAS, Singapore 639798, Singapore
[7] CINTRA CNRS NTU THALES, UMI 3288,Res Techno Plaza, Singapore 637553, Singapore
基金
新加坡国家研究基金会;
关键词
catalytic polysulfide conversion; density functional theory; hollow nanocages; lithium-sulfur batteries; physicochemical confinement; TOTAL-ENERGY CALCULATIONS; METAL-ORGANIC FRAMEWORK; RATIONAL DESIGN; CARBON; NITROGEN; EFFICIENT; CATHODE; ELECTRODE; HOST; HETEROSTRUCTURES;
D O I
10.1002/aenm.201904010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The lithium-sulfur (Li-S) battery is widely regarded as a promising energy storage device due to its low price and the high earth-abundance of the materials employed. However, the shuttle effect of lithium polysulfides (LiPSs) and sluggish redox conversion result in inefficient sulfur utilization, low power density, and rapid electrode deterioration. Herein, these challenges are addressed with two strategies 1) increasing LiPS conversion kinetics through catalysis, and 2) alleviating the shuttle effect by enhanced trapping and adsorption of LiPSs. These improvements are achieved by constructing double-shelled hollow nanocages decorated with a cobalt nitride catalyst. The N-doped hollow inner carbon shell not only serves as a physiochemical absorber for LiPSs, but also improves the electrical conductivity of the electrode; significantly suppressing shuttle effect. Cobalt nitride (Co4N) nanoparticles, embedded in nitrogen-doped carbon in the outer shell, catalyze the conversion of LiPSs, leading to decreased polarization and fast kinetics during cycling. Theoretical study of the Li intercalation energetics confirms the improved catalytic activity of the Co4N compared to metallic Co catalyst. Altogether, the electrode shows large reversible capacity (1242 mAh g(-1) at 0.1 C), robust stability (capacity retention of 658 mAh g(-1) at 5 C after 400 cycles), and superior cycling stability at high sulfur loading (4.5 mg cm(-2)).
引用
收藏
页数:10
相关论文
共 69 条
[1]   Modified Separator Performing Dual Physical/Chemical Roles to Inhibit Polysulfide Shuttle Resulting in Ultrastable Li-S Batteries [J].
Abbas, Syed Ali ;
Ding, Jiang ;
Wu, Sheng Hui ;
Fang, Jason ;
Boopathi, Karunakara Moorthy ;
Mohapatra, Anisha ;
Lee, Li Wei ;
Wang, Pen-Cheng ;
Chang, Chien-Cheng ;
Chu, Chih Wei .
ACS NANO, 2017, 11 (12) :12436-12445
[2]   Electrocatalytic Polysulfide Traps for Controlling Redox Shuttle Process of Li-S Batteries [J].
Al Salem, Hesham ;
Babu, Ganguli ;
Rao, Chitturi V. ;
Arava, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (36) :11542-11545
[3]   Facile Synthesis of Crumpled Nitrogen-Doped MXene Nanosheets as a New Sulfur Host for Lithium-Sulfur Batteries [J].
Bao, Weizhai ;
Liu, Lin ;
Wang, Chengyin ;
Choi, Sinho ;
Wang, Dan ;
Wang, Guoxiu .
ADVANCED ENERGY MATERIALS, 2018, 8 (13)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Graph Theory Approach to High-Throughput Surface Adsorption Structure Generation [J].
Boes, Jacob R. ;
Mamun, Osman ;
Winther, Kirsten ;
Bligaard, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (11) :2281-2285
[6]   Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon-Carbon Nanotube Hybrids as Host for Lithium-Sulfur Batteries [J].
Cai, Junjie ;
Wu, Chun ;
Yang, Shaoran ;
Zhu, Ying ;
Shen, Pei Kang ;
Zhang, Kaili .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (39) :33876-33886
[7]   The Dual-Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High-Performance Li-S Full Cell [J].
Cai, Wenlong ;
Li, Gaoran ;
Luo, Dan ;
Xiao, Guannan ;
Zhu, Shanshan ;
Zhao, Yingyue ;
Chen, Zhongwei ;
Zhu, Yongchun ;
Qian, Yitai .
ADVANCED ENERGY MATERIALS, 2018, 8 (34)
[8]   Metal-Organic Frameworks (MOFs)-Derived Nitrogen-Doped Porous Carbon Anchored on Graphene with Multifunctional Effects for Lithium-Sulfur Batteries [J].
Chen, Ke ;
Sun, Zhenhua ;
Fang, Ruopian ;
Shi, Ying ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
[9]   Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes [J].
Chen, Liang ;
Feng, Jianrui ;
Zhou, Haihui ;
Fu, Chaopeng ;
Wang, Guichang ;
Yang, Liming ;
Xu, Chenxi ;
Chen, Zhongxue ;
Yang, Wenji ;
Kuang, Yafei .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (16) :7403-7415
[10]   Honeycomb-like Nitrogen and Sulfur Dual-Doped Hierarchical Porous Biomass-Derived Carbon for Lithium-Sulfur Batteries [J].
Chen, Manfang ;
Jiang, Shouxin ;
Huang, Cheng ;
Wang, Xianyou ;
Cai, Siyu ;
Xiang, Kaixiong ;
Zhang, Yapeng ;
Xue, Jiaxi .
CHEMSUSCHEM, 2017, 10 (08) :1803-1812