Stability and performance recovery within discretized non-linear control systems

被引:0
作者
Herrmann, Guido [1 ]
Spurgeon, Sarah K. [1 ]
Edwards, Christopher [1 ]
机构
[1] Univ Bristol, Dynam & Control Grp, Bristol BS8 1TR, Avon, England
关键词
output constraint; override control; non-smooth Lyapunov function; high-gain component;
D O I
10.1016/j.automatica.2007.08.023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a closed-loop fast sampling analysis of a discretized (emulated) continuous-time controller in a sampled-data environment is presented. The analysis involves a general weighted version of the L-p-norm. This allows a qualitative and quantitative stability and performance analysis for an emulated controller. Several examples are used to show the relevance of these results for the analysis of sampled-data implementations and the computation of quantitative upper limits on the sampling period to achieve recovery of stability and performance. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1045 / 1054
页数:10
相关论文
共 24 条
  • [1] INPUT OUTPUT STABILITY OF SAMPLED-DATA SYSTEMS
    CHEN, T
    FRANCIS, BA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (01) : 50 - 58
  • [2] Chen T., 1995, OPTIMAL SAMPLED DATA, DOI [10.1007/978-1-4471-3037-6, DOI 10.1007/978-1-4471-3037-6]
  • [3] CRAVEN BD, 1982, LEBESGUE MEASURE INT
  • [4] Desoer CA., 1975, FEEDBACK SYSTEMS INP
  • [5] STABILITY THEORY FOR LINEAR TIME-INVARIANT PLANTS WITH PERIODIC DIGITAL CONTROLLERS
    FRANCIS, BA
    GEORGIOU, TT
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (09) : 820 - 832
  • [6] Grüne L, 1999, LECT NOTES CONTR INF, V246, P165
  • [7] Guillaume AM, 1995, NONLINEAR CONTROL SYSTEMS DESIGN 1995, VOLS 1 AND 2, P777
  • [8] Herrmann G, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P5985
  • [9] Discretization of a non-linear, continuous-time control law with small control delays
    Herrmann, G
    Spurgeon, SK
    Edwards, C
    [J]. ASIAN JOURNAL OF CONTROL, 2003, 5 (01) : 65 - 77
  • [10] Ichikawa A., 2001, LINEAR TIME VARYING