CIRCULAR HANDLE DECOMPOSITIONS OF FREE GENUS ONE KNOTS

被引:2
作者
Manjarrez-Gutierrez, Fabiola [1 ]
Nunez, Victor [1 ]
Ramirez-Losada, Enrique [1 ]
机构
[1] CIMAT, Guanajuato 36000, Mexico
关键词
circular thin position; free genus; free genus one knots; Seifert surfaces; handle decompositions; almost fibered; TUNNEL NUMBER;
D O I
10.2140/pjm.2015.275.361
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the structure of the circular handle decompositions of the family of free genus one knots. Namely, if k is a free genus one knot, then the handle number h (k) = 0, 1 or 2, and, if k is not fibered (that is, if h (k) > 0), then k is almost fibered. For this, we develop practical techniques to construct circular handle decompositions of knots with free Seifert surfaces in the 3-sphere (and compute handle numbers of many knots), and, also, we characterize the free genus one knots with more than one Seifert surface. These results are obtained through analysis of spines of surfaces on handle-bodies. Also we show that there are infinite families of free genus one knots with either h (k) = 1 or h (k) = 2.
引用
收藏
页码:361 / 407
页数:47
相关论文
共 16 条
[1]  
GABAI D, 1986, MEM AM MATH SOC, V59, P1
[2]  
GODA H, 1993, OSAKA J MATH, V30, P63
[3]  
GODA H, 2006, FLOER HOMOLOGY GAUGE, P71
[4]  
Goda H, 2006, KOBE J MATH, V23, P11
[5]  
Hall H. S., 1946, HIGHER ALGEBRA SEQUE
[6]  
Hirasawa M., 2003, MATH0311134 ARXIV
[7]   Two-generator discrete subgroups of Isom(H2) containing orientation-reversing elements [J].
Klimenko, E ;
Sakuma, M .
GEOMETRIAE DEDICATA, 1998, 72 (03) :247-282
[8]   Circular thin position for knots in S3 [J].
Manjarrez-Gutierrez, Fabiola .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (01) :429-454
[9]  
Pajitnov A. B., 2001, MATH J, V13, p[105, 417]
[10]   On the tunnel number and the Morse-Novikov number of knots [J].
Pajitnov, Andrei .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (02) :627-635