共 39 条
Global regularity for the 2D Oldroyd-B model with fractional dissipation
被引:0
作者:
Xie, Qianqian
[1
,2
]
Ye, Zhuan
[3
]
机构:
[1] Hefei Univ, Dept Math & Stat, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ, Key Lab Appl Math & Artificial Intelligence Mech, Hefei 230601, Anhui, Peoples R China
[3] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
来源:
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK
|
2022年
/
102卷
/
02期
基金:
中国国家自然科学基金;
关键词:
BOUSSINESQ EQUATIONS;
VISCOELASTIC FLUIDS;
WELL-POSEDNESS;
EXISTENCE;
EULER;
CRITERIA;
FLOW;
D O I:
10.1002/zamm.202000363
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper deals with the Cauchy problem for the two-dimensional incompressible Oldroyd-B model in the corotational case with fractional dissipation (-Delta)alpha u and (-Delta)beta tau, where 0<alpha,beta<1. Our objective is to establish global regularity of the fractional Oldroyd-B model with minimal amount of dissipation. The proof of the global regularity relies on the introduction of combined quantities, sharp lower bounds for the fractional dissipation, the De Giorgi-Nash estimate and sharp upper bounds for the nonlinearities.
引用
收藏
页数:31
相关论文