Global regularity for the 2D Oldroyd-B model with fractional dissipation

被引:0
作者
Xie, Qianqian [1 ,2 ]
Ye, Zhuan [3 ]
机构
[1] Hefei Univ, Dept Math & Stat, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ, Key Lab Appl Math & Artificial Intelligence Mech, Hefei 230601, Anhui, Peoples R China
[3] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2022年 / 102卷 / 02期
基金
中国国家自然科学基金;
关键词
BOUSSINESQ EQUATIONS; VISCOELASTIC FLUIDS; WELL-POSEDNESS; EXISTENCE; EULER; CRITERIA; FLOW;
D O I
10.1002/zamm.202000363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Cauchy problem for the two-dimensional incompressible Oldroyd-B model in the corotational case with fractional dissipation (-Delta)alpha u and (-Delta)beta tau, where 0<alpha,beta<1. Our objective is to establish global regularity of the fractional Oldroyd-B model with minimal amount of dissipation. The proof of the global regularity relies on the introduction of combined quantities, sharp lower bounds for the fractional dissipation, the De Giorgi-Nash estimate and sharp upper bounds for the nonlinearities.
引用
收藏
页数:31
相关论文
共 39 条
[31]   REGULARITY RESULTS FOR THE 2D BOUSSINESQ EQUATIONS WITH CRITICAL OR SUPERCRITICAL DISSIPATION [J].
Wu, Jiahong ;
Xu, Xiaojing ;
Xue, Liutang ;
Ye, Zhuan .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (07) :1963-1997
[32]   Global regularity of the high-dimensional Oldroyd-B model in the corotational case [J].
Ye, Zhuan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
[33]   Some New Regularity Criteria for the 2D Euler-Boussinesq Equations Via the Temperature [J].
Ye, Zhuan .
ACTA APPLICANDAE MATHEMATICAE, 2018, 157 (01) :141-169
[34]   Global regularity for the 2D Oldroyd-B model in the corotational case [J].
Ye, Zhuan ;
Xu, Xiaojing .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (13) :3866-3879
[35]   Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation [J].
Ye, Zhuan ;
Xu, Xiaojing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) :6716-6744
[36]   GLOBAL EXISTENCE OF STRONG SOLUTION FOR EQUATIONS RELATED TO THE INCOMPRESSIBLE VISCOELASTIC FLUIDS IN THE CRITICAL Lp FRAMEWORK [J].
Zhang, Ting ;
Fang, Daoyuan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :2266-2288
[37]   Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism [J].
Zhu, Yi .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (07) :2039-2060
[38]   Global Solution to the Incompressible Oldroyd-B Model in Hybrid Besov Spaces [J].
Zi, Ruizhao .
FILOMAT, 2016, 30 (13) :3627-3639
[39]   Global Solution to the Incompressible Oldroyd-B Model in the Critical L p Framework: the Case of the Non-Small Coupling Parameter [J].
Zi, Ruizhao ;
Fang, Daoyuan ;
Zhang, Ting .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (02) :651-687