Global regularity for the 2D Oldroyd-B model with fractional dissipation

被引:0
作者
Xie, Qianqian [1 ,2 ]
Ye, Zhuan [3 ]
机构
[1] Hefei Univ, Dept Math & Stat, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ, Key Lab Appl Math & Artificial Intelligence Mech, Hefei 230601, Anhui, Peoples R China
[3] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2022年 / 102卷 / 02期
基金
中国国家自然科学基金;
关键词
BOUSSINESQ EQUATIONS; VISCOELASTIC FLUIDS; WELL-POSEDNESS; EXISTENCE; EULER; CRITERIA; FLOW;
D O I
10.1002/zamm.202000363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Cauchy problem for the two-dimensional incompressible Oldroyd-B model in the corotational case with fractional dissipation (-Delta)alpha u and (-Delta)beta tau, where 0<alpha,beta<1. Our objective is to establish global regularity of the fractional Oldroyd-B model with minimal amount of dissipation. The proof of the global regularity relies on the introduction of combined quantities, sharp lower bounds for the fractional dissipation, the De Giorgi-Nash estimate and sharp upper bounds for the nonlinearities.
引用
收藏
页数:31
相关论文
共 39 条
[21]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[22]   WELL-POSEDNESS AND SCATTERING RESULTS FOR THE GENERALIZED KORTEWEG-DEVRIES EQUATION VIA THE CONTRACTION PRINCIPLE [J].
KENIG, CE ;
PONCE, G ;
VEGA, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (04) :527-620
[23]  
Kupferman R, 2008, COMMUN MATH SCI, V6, P235
[24]  
Lei Z, 2007, COMMUN MATH SCI, V5, P595
[25]   On 2D Viscoelasticity with Small Strain [J].
Lei, Zhen .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :13-37
[26]   Remarks on the blowup criteria for Oldroyd models [J].
Lei, Zhen ;
Masmoudi, Nader ;
Zhou, Yi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (02) :328-341
[27]   On the initial-boundary value problem of the incompressible viscoelastic fluid system [J].
Lin, Fanghua ;
Zhang, Ping .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (04) :539-558
[28]   On hydrodynamics of viscoelastic fluids [J].
Lin, FH ;
Liu, C ;
Zhang, P .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (11) :1437-1471
[29]  
Lions PL, 2000, CHINESE ANN MATH B, V21, P131, DOI 10.1142/S0252959900000170
[30]   NON-NEWTONIAN EFFECTS IN STEADY MOTION OF SOME IDEALIZED ELASTICO-VISCOUS LIQUIDS [J].
OLDROYD, JG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 245 (1241) :278-297