Global regularity for the 2D Oldroyd-B model with fractional dissipation

被引:0
作者
Xie, Qianqian [1 ,2 ]
Ye, Zhuan [3 ]
机构
[1] Hefei Univ, Dept Math & Stat, Hefei 230601, Anhui, Peoples R China
[2] Hefei Univ, Key Lab Appl Math & Artificial Intelligence Mech, Hefei 230601, Anhui, Peoples R China
[3] Jiangsu Normal Univ, Dept Math & Stat, 101 Shanghai Rd, Xuzhou 221116, Jiangsu, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2022年 / 102卷 / 02期
基金
中国国家自然科学基金;
关键词
BOUSSINESQ EQUATIONS; VISCOELASTIC FLUIDS; WELL-POSEDNESS; EXISTENCE; EULER; CRITERIA; FLOW;
D O I
10.1002/zamm.202000363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Cauchy problem for the two-dimensional incompressible Oldroyd-B model in the corotational case with fractional dissipation (-Delta)alpha u and (-Delta)beta tau, where 0<alpha,beta<1. Our objective is to establish global regularity of the fractional Oldroyd-B model with minimal amount of dissipation. The proof of the global regularity relies on the introduction of combined quantities, sharp lower bounds for the fractional dissipation, the De Giorgi-Nash estimate and sharp upper bounds for the nonlinearities.
引用
收藏
页数:31
相关论文
共 39 条
[1]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[2]   Global weak solutions for some Oldroyd models [J].
Bejaoui, Olfa ;
Majdoub, Mohamed .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :660-685
[3]   THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION [J].
Cao, Chongsheng ;
Wu, Jiahong ;
Yuan, Baoquan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) :588-602
[4]   Quasi-geostrophic equations, nonlinear Bernstein inequalities and α-stable processes [J].
Chamorro, Diego ;
Lemarie-Rieusset, Pierre Gilles .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (04) :1109-1122
[5]   About lifespan of regular solutions of equations related to viscoelastic fluids [J].
Chemin, JY ;
Masmoudi, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (01) :84-112
[6]   Global well-posedness of viscoelastic fluids of Oldroyd type in Besov spaces [J].
Chen, Qionglei ;
Miao, Changxing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :1928-1939
[7]   The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions [J].
Chen, Yemin ;
Zhang, Ping .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (12) :1793-1810
[8]  
Constantin P, 2006, LECT NOTES MATH, V1871, P1
[9]   Note on Global Regularity for Two-Dimensional Oldroyd-B Fluids with Diffusive Stress [J].
Constantin, Peter ;
Kliegl, Markus .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (03) :725-740
[10]   REMARKS ON OLDROYD-B AND RELATED COMPLEX FLUID MODELS [J].
Constantin, Peter ;
Sun, Weiran .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (01) :33-73