Finite Nilpotent Groups Whose Cyclic Subgroups are TI-Subgroups

被引:4
作者
Abdollahi, Alireza [1 ,2 ]
Mousavi, Hamid [3 ]
机构
[1] Univ Isfahan, Dept Math, Esfahan 8174673441, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Univ Tabriz, Dept Math, POB 51666-17766, Tabriz, Iran
关键词
TI-group; CTI-groups; p-Group; ABELIAN SUBGROUPS; TRIVIAL INTERSECTION; P-GROUPS;
D O I
10.1007/s40840-015-0151-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is called a TI-subgroup if H-g boolean AND H = 1 or H for all g is an element of G; and H is called quasi TI if C-G(x) <= N-G(H) for all non-trivial elements x is an element of H. A group G is called (quasi CTI-group) CTI-group if every cyclic subgroup of G is a (quasi TI-subgroup) TI-subgroup. It is clear that TI subgroups are quasi TI. We first show that finite nilpotent quasi CTI-groups are CTI. In this paper, we classify all finite nilpotent CTI-groups.
引用
收藏
页码:1577 / 1589
页数:13
相关论文
共 11 条
[1]  
[Anonymous], 1967, ENDLICHE GRUPPEN
[2]   On subgroups of finite p-groups [J].
Berkovich, Y .
JOURNAL OF ALGEBRA, 2000, 224 (02) :198-240
[3]   Finite groups whose abelian subgroups are TI-subgroups [J].
Guo, Xiuyun ;
Li, Shirong ;
Flavell, Paul .
JOURNAL OF ALGEBRA, 2007, 307 (02) :565-569
[4]  
Kazarin L. S., 1969, PERM GOS U UCHEN ZAP, V218, P268
[5]  
Kazarin L. S., 1971, SOV MATH DOKL, V12, P549
[6]  
KAZARIN LS, 1971, DOKL AKAD NAUK SSSR+, V197, P773
[7]   Finite p-groups whose Abelian subgroups have a trivial intersection [J].
Li, Shi Rong ;
Guo, Xiu Yun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (04) :731-734
[8]   The structure of non-nilpotent CTI-groups [J].
Mousavi, Hamid ;
Rastgoo, Tahereh ;
Zenkov, Viktor .
JOURNAL OF GROUP THEORY, 2013, 16 (02) :249-261
[9]   Finite groups all of whose abelian subgroups are QTI-subgroups [J].
Qian, Guohua ;
Tang, Feng .
JOURNAL OF ALGEBRA, 2008, 320 (09) :3605-3611
[10]  
Scott W.R., 2012, GROUP THEORY