Polynomial constants of motion for Calogero-type systems in three dimensions

被引:16
作者
Chanu, Claudia [1 ]
Degiovanni, Luca [2 ]
Rastelli, Giovanni [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Milan, Italy
[2] Univ Torino, Dipartimento Matemat, I-10123 Turin, Italy
关键词
D O I
10.1063/1.3559132
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an explicit and concise formula for higher degree polynomial first integrals of a family of Calogero-type Hamiltonian systems in dimension three. These first integrals, together with the already known ones, prove the maximal superintegrability of the systems. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3559132]
引用
收藏
页数:7
相关论文
共 9 条
[1]  
CHANU C, ARXIV09075288V1
[2]  
CHANU C, ARXIV08021353V1NLINS
[3]   Superintegrable three-body systems on the line [J].
Chanu, Claudia ;
Degiovanni, Luca ;
Rastelli, Giovanni .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (11)
[4]   Families of classical subgroup separable superintegrable systems [J].
Kalnins, E. G. ;
Kress, J. M. ;
Miller, W., Jr. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (09)
[5]  
KALNINS EG, ARXIV09122278MATHPH
[6]   Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces [J].
Maciejewski, Andrzej J. ;
Przybylska, Maria ;
Yoshida, Haruo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
[7]  
RASTELLI G, ARXIV10010752
[8]   Periodic orbits for an infinite family of classical superintegrable systems [J].
Tremblay, Frederick ;
Turbiner, Alexander V. ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (01)
[9]   An infinite family of solvable and integrable quantum systems on a plane [J].
Tremblay, Frederick ;
Turbiner, Alexander V. ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)