Solving Volume Electric Current Integral Equation With Full- and Half-SWG Functions

被引:16
作者
Zhang, Li-Ming [1 ,2 ,3 ]
Sheng, Xin-Qing [1 ]
机构
[1] Beijing Inst Technol, Ctr Electromagnet Simulat, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Liaocheng Univ, Sch Phys Sci & Informat Engn, Liaocheng 252059, Peoples R China
[3] Liaocheng Univ, Shandong Prov Key Lab Opt Commun Sci & Technol, Liaocheng 252059, Peoples R China
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2015年 / 14卷
基金
中国国家自然科学基金;
关键词
Electromagnetic scattering; equivalent electric current; volume integral equation (VIE);
D O I
10.1109/LAWP.2014.2376937
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter solves the volume electric current integral equation (VJIE) using the hybrid Full-and Half-Schaubert-Wilton-Glisson (SWG) basis functions for inhomogeneous dielectric objects. Techniques are developed for dealing with the discontinuity of equivalent volume electric currents on the interface between two media. Numerical results show that the VJIE discretized with the SWG basis functions (JSWG) has much faster convergence solution than the traditional volume electric flux (D) integral equation (VDIE), especially for relatively high-permittivity objects, while maintaining the same accuracy. Moreover, for the same mesh, the presented JSWG scheme needs much fewer number of unknowns compared to that of the VJIE using the constant vector basis functions (JConstBasis) for piecewise homogeneous dielectric objects problems.
引用
收藏
页码:682 / 685
页数:4
相关论文
共 11 条
[1]   Solving the volume integral equations of electromagnetic scattering [J].
Botha, Matthys M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :141-158
[2]  
Lu C.-C., 2009, IEEE Int. Symp. Antennas Propagation, P1, DOI 10.1109/ICBBE.2009.5162865
[3]   A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes [J].
Lu, CC .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (03) :606-612
[4]  
Markkanen J., 2013, 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), P880, DOI 10.1109/ICEAA.2013.6632364
[5]   Discretization of Volume Integral Equation Formulations for Extremely Anisotropic Materials [J].
Markkanen, Johannes ;
Yla-Oijala, Pasi ;
Sihvola, Ari .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (11) :5195-5202
[6]   Analysis of Volume Integral Equation Formulations for Scattering by High-Contrast Penetrable Objects [J].
Markkanen, Johannes ;
Lu, Cai-Cheng ;
Cao, Xiande ;
Yla-Oijala, Pasi .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (05) :2367-2374
[7]   On volume integral equations [J].
Sancer, Maurice I. ;
Sertel, Kubilay ;
Volakis, John L. ;
Van Alstine, Peter .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2006, 54 (05) :1488-1495
[8]   A TETRAHEDRAL MODELING METHOD FOR ELECTROMAGNETIC SCATTERING BY ARBITRARILY SHAPED INHOMOGENEOUS DIELECTRIC BODIES [J].
SCHAUBERT, DH ;
WILTON, DR ;
GLISSON, AW .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1984, 32 (01) :77-85
[9]   Separation of horizontal and vertical dependencies in a surface/volume integral equation approach to model quasi 3-D structures in multilayered media [J].
Schols, Yves ;
Vandenbosch, Guy A. E. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (04) :1086-1094
[10]   A novel formulation of the volume integral equation for electromagnetic scattering [J].
Sun, L. E. ;
Chew, W. C. .
WAVES IN RANDOM AND COMPLEX MEDIA, 2009, 19 (01) :162-180