Nonstandard Hamiltonian structures of the Lienard equation and contact geometry

被引:40
作者
Carinena, Jose F. [1 ]
Guha, Partha [2 ,3 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] SN Bose Natl Ctr Basic Sci, JD Block,Sect 3, Kolkata 700106, India
[3] Univ Sao Paulo, IFSC, BR-13560970 Sao Carlos, SP, Brazil
关键词
Reeb vector field; nonstandard Hamiltonian; contact structure; deformed Lagrangian; INTEGRABILITY; DEFORMATION; LAGRANGIANS;
D O I
10.1142/S0219887819400012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The construction of nonstandard Lagrangians and Hamiltonian structures for Lienard equations satisfying Chiellini condition is presented and their connection to time-dependent Hamiltonian formalism is shown. We also show that such nonstandard Lagrangians are deformations of simpler standard Lagrangians. We also exhibit their connection with contact Hamiltonian mechanics.
引用
收藏
页数:13
相关论文
共 37 条
[1]  
[Anonymous], 1928, REV GENERALE LELECTR, DOI DOI 10.1016/J.JWEIA.2013.09.002
[2]  
[Anonymous], 1942, Duke Math. J, DOI [10.1215/S0012-7094-42-00928-1, DOI 10.1215/S0012-7094-42-00928-1]
[3]  
[Anonymous], 1987, FDN MECH
[4]  
[Anonymous], 1844, J REINE ANGEW MATH
[5]  
Arnold V. I., 2013, Mathematical methods of classical mechanics, V60
[6]   On quantized Lienard oscillator and momentum dependent mass [J].
Bagchi, B. ;
Choudhury, A. Ghose ;
Guha, Partha .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
[7]  
Banyaga A., 2016, NANKAI TRACTS MATH, V15
[8]   New exact general solutions of Abel equation of the second kind [J].
Bougoffa, Lazhar .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) :689-691
[9]   Contact Hamiltonian mechanics [J].
Bravetti, Alessandro ;
Cruz, Hans ;
Tapias, Diego .
ANNALS OF PHYSICS, 2017, 376 :17-39
[10]  
Caldirola P, 1941, Nuovo Cim., V18, P393, DOI [DOI 10.1007/BF02960144, 10.1007/bf02960144]