A Texture-Based Probabilistic Approach for Lung Nodule Segmentation

被引:0
作者
Zinoveva, Olga [1 ]
Zinovev, Dmitriy [2 ]
Siena, Stephen A. [3 ]
Raicu, Daniela S.
Furst, Jacob [4 ]
Armato, Samuel G. [4 ]
机构
[1] Harvard Univ, 200 Quincy Mail Ctr, Cambridge, MA 02138 USA
[2] Depaul Univ, Coll Comp & Digital Media, Chicago, IL 60604 USA
[3] Univ Notre Dame, Notre Dame, IN 46556 USA
[4] Univ Chicago, Comprehens Canc Ctr, Chicago, IL 60637 USA
来源
IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT II: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011 | 2011年 / 6754卷
关键词
segmentation; probabilistic; lung; classifier; LIDC; PULMONARY NODULES; CT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Producing consistent segmentations of lung nodules in CT scans is a persistent problem of image processing algorithms. Many hard-segmentation approaches are proposed in the literature, but soft segmentation of lung nodules remains largely unexplored. In this paper, we propose a classification-based approach based on pixel-level texture features that produces soft (probabilistic) segmentations. We tested this classifier on the publicly available Lung Image Database Consortium (LIDC) dataset. We further refined the classification results with a post-processing algorithm based on the variability index. The algorithm performed well on nodules not adjacent to the chest wall, producing a soft overlap between radiologists' based segmentation and computer-based segmentation of 0.52. In the long term, these soft segmentations will be useful for representing the uncertainty in nodule boundaries that is manifest in radiological image segmentations.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
[31]   An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image [J].
Halder, Amitava ;
Chatterjee, Saptarshi ;
Dey, Debangshu ;
Kole, Surajit ;
Munshi, Sugata .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 197
[32]   Kernel-based Bayesian clustering of computed tomography images for lung nodule segmentation [J].
Baby, Yadhu ;
Sumathy, Vinod Kumar Ramayyan .
IET IMAGE PROCESSING, 2020, 14 (05) :890-900
[33]   Content Based Image Retrieval Approach in Creating an Effective Feature Index for Lung Nodule Detection with the Inclusion of Expert Knowledge and Proven Pathology [J].
Aggarwal, Preeti ;
Sardana, H. K. ;
Vig, Renu .
CURRENT MEDICAL IMAGING, 2014, 10 (03) :178-204
[34]   Lung parenchyma segmentation and nodule detection using deep learning [J].
G. S. Nandeesh ;
M. Nagabushanam ;
S. Pramodkumar ;
S. Nandini .
Journal of Optics, 2024, 53 :635-642
[35]   TEXTURE-BASED SEPARATION TO REFINE BUILDING MESHES [J].
Vermandere, Jelle ;
Bassier, Maarten ;
Vergauwen, Maarten .
GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, :479-485
[36]   Hessian based approaches for 3D lung nodule segmentation [J].
Goncalves, L. ;
Novo, J. ;
Campilho, A. .
EXPERT SYSTEMS WITH APPLICATIONS, 2016, 61 :1-15
[37]   Deep Deconvolutional Residual Network Based Automatic Lung Nodule Segmentation [J].
Singadkar, Ganesh ;
Mahajan, Abhishek ;
Thakur, Meenakshi ;
Talbar, Sanjay .
JOURNAL OF DIGITAL IMAGING, 2020, 33 (03) :678-684
[38]   Superpixel and Density Based Region Segmentation Algorithm for Lung Nodule Detection [J].
Halder, Amitava ;
Chatterjee, Saptarshi ;
Dey, Debangshu .
2020 IEEE CALCUTTA CONFERENCE (CALCON), 2020, :511-515
[39]   An Automatically Generated Texture-based Atlas of the Lungs [J].
Cid, Yashin Dicente ;
Puonti, Oula ;
Platon, Alexandra ;
Van Leemput, Koen ;
Mueller, Henning ;
Poletti, Pierre-Alexandre .
MEDICAL IMAGING 2018: COMPUTER-AIDED DIAGNOSIS, 2018, 10575
[40]   Lung Nodule CT Image Segmentation Model Based on Multiscale Dense Residual Neural Network [J].
Zhang, Xinying ;
Kong, Shanshan ;
Han, Yang ;
Xie, Baoshan ;
Liu, Chunfeng .
MATHEMATICS, 2023, 11 (06)