Second- and third-order bias reduction for one-parameter family models

被引:12
作者
Ferrari, SLP
Botter, DA
Cordeiro, GM
CribariNeto, F
机构
[1] UNIV SAO PAULO,DEPT ESTATIST,BR-05389970 SAO PAULO,BRAZIL
[2] UNIV FED PERNAMBUCO,DEPT ESTATIST,BR-50740540 RECIFE,PE,BRAZIL
[3] SO ILLINOIS UNIV,DEPT ECON,CARBONDALE,IL 62901
关键词
asymptotic expansion; bias correction; exponential family; maximum likelihood estimate;
D O I
10.1016/S0167-7152(95)00237-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we derive second- and third-order bias-corrected maximum likelihood estimates in general uniparametric models. We compare the corrected estimates and the usual maximum likelihood estimate in terms of their mean squared errors. We also obtain closed-form expressions for bias-corrected estimates in one-parameter exponential family models. Our results cover many important and commonly used distributions. Simulation results are also given.
引用
收藏
页码:339 / 345
页数:7
相关论文
共 9 条
[1]  
ABELL ML, 1994, MAPLE V HDB
[2]  
Becker RA., 1988, NEW S LANGUAGE
[3]  
BICKEL PJ, 1977, MATH STATISTICS
[4]  
JORGENSEN B, 1987, J ROY STAT SOC B MET, V49, P127
[5]  
LAWLEY DN, 1956, BIOMETRIKA, V71, P233
[6]   NATURAL REAL EXPONENTIAL-FAMILIES WITH CUBIC VARIANCE FUNCTIONS [J].
LETAC, G ;
MORA, M .
ANNALS OF STATISTICS, 1990, 18 (01) :1-37
[7]   NATURAL EXPONENTIAL-FAMILIES WITH QUADRATIC VARIANCE FUNCTIONS [J].
MORRIS, CN .
ANNALS OF STATISTICS, 1982, 10 (01) :65-80
[8]  
Shenton, 1977, MAXIMUM LIKELIHOOD E
[9]  
Wolfram S., 1991, MATH SYSTEM DOING MA