Proton transport of porous triazole-grafted polysulfone membranes for high temperature polymer electrolyte membrane fuel cell

被引:19
|
作者
Dong, Chang [1 ,2 ]
Xu, Xin [1 ,2 ]
Zhang, Jin [1 ,2 ]
Wang, Haining [1 ,2 ]
Xiang, Yan [1 ,2 ]
Zhu, Haijin [3 ]
Forsyth, Maria [3 ]
Lu, Shanfu [1 ,2 ]
机构
[1] Beihang Univ, Beijing Key Lab Bioinspired Energy Mat & Devices, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Space & Environm, Beijing 100191, Peoples R China
[3] Deakin Univ, Inst Frontier Mat, Geelong, Vic 3220, Australia
基金
国家重点研发计划;
关键词
Triazole; Porous membrane; Proton transport; Percolation theory; HT-PEMFC; PHOSPHORIC-ACID; EXCHANGE-MEMBRANE; POLYBENZIMIDAZOLE; CONDUCTIVITY; BLENDS; PERFORMANCE;
D O I
10.1016/j.ijhydene.2021.12.158
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Introduction of porous structure to high temperature polymer electrolyte membranes is one of effective pathways to increase their proton conductivity under elevated temperature. However, the effect of the porous structure on the proton diffusion mechanism of these membranes is still unclear. In this work, the proton transport behaviour of a series of porous triazole-polysulfone (PSf) membranes under elevated temperature is comprehensively investigated. The functional triazole ring in the framework of porous triazole-PSf acts a proton acceptor to form acid-base pair with phosphoric acid (PA). In addition, the proton diffusion coefficient and proton conductivity of PA-doped porous triazole-PSf is an order of magnitude higher than that of the PA-doped dense triazole-PSf membrane. Percolation theory calculation convinces that the high proton conductivity of PA-doped porous triazole-PSf is due to the formation of continuous long-range proton diffusion channels under high pore connectivity and porosity. On the contrary, excessive pore connectivity also results in high gas permeability, leading to decrease of the open circuit voltage and cell performance of the single cell. Consequently, the optimum porosity for the PA-doped porous triazole-PSf membrane is 75% for fuel cell operating with the maximum peak power density of 550 mW(-2) and great durability for 120 h under 140 degrees C. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8492 / 8501
页数:10
相关论文
共 50 条
  • [21] Characteristics of Water Transport of Membrane Electrolyte over Selected Temperature for Proton Exchange Membrane Fuel Cell
    Ngoc Van Trinh
    Xuan Linh Nguyen
    Kim, Younghyeon
    Yu, Sangseok
    POLYMERS, 2022, 14 (15)
  • [22] A High Temperature Polymer Electrolyte Membrane Fuel Cell Model for Reformate Gas
    Mamlouk, M.
    Sousa, Tiago
    Scott, Keith
    INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2011, 2011
  • [23] PBI derivatives: Polymer electrolyte fuel cell membrane for high temperature operation
    Kim, HJ
    Lim, TH
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1081 - 1085
  • [24] Externally cooled high temperature polymer electrolyte membrane fuel cell stack
    Scholta, J.
    Messerschmidt, M.
    Joerissen, L.
    Hartnig, Ch.
    JOURNAL OF POWER SOURCES, 2009, 190 (01) : 83 - 85
  • [25] High temperature proton conducting hybrid polymer electrolyte membranes
    Homna, I
    Nakajima, H
    Nomura, S
    SOLID STATE IONICS, 2002, 154 : 707 - 712
  • [26] A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell
    Kumar, Milan
    Edwards, Brian J.
    Paddison, Stephen J.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (06):
  • [27] Improvement of polymer electrolyte membranes for polymer electrolyte membrane and direct methanol fuel cell applications
    Qiao, L
    Agoumba, D
    Waterfeld, A
    Thrasher, JS
    POWER SOURCES FOR THE NEW MILLENNIUM, PROCEEDINGS, 2001, 2000 (22): : 92 - 102
  • [28] Water transport characteristics of polymer electrolyte membrane fuel cell
    Rajalakshmi, N
    Jayanth, TT
    Thangamuthu, R
    Sasikumar, G
    Sridhar, P
    Dhathathreyan, KS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (10) : 1009 - 1014
  • [29] MODELLING OF WATER TRANSPORT IN THE POLYMER ELECTROLYTE MEMBRANE OF A FUEL CELL
    Simek, Martin
    Nemec, Tomas
    Marsik, Frantisek
    EXPERIMENTAL FLUID MECHANICS 2010, 2010, : 670 - 689
  • [30] Membrane transport phenomena in a Polymer-Electrolyte-Fuel-Cell
    Neubrand, W
    Eigenberger, G
    Wohr, M
    Bolwin, K
    HYDROGEN ENERGY PROGRESS XI, VOLS 1-3, 1996, : 1881 - 1885