Synthesis of reduced graphene oxide-iron nanoparticles with superior enzyme-mimetic activity for biosensing application

被引:44
作者
Li, Lili [1 ]
Zeng, Chunmei [1 ]
Ai, Lunhong [1 ]
Jiang, Jing [1 ]
机构
[1] China West Normal Univ, Coll Chem & Chem Engn, Chem Synth & Pollut Control Key Lab Sichuan Prov, Nanchong 637002, Peoples R China
基金
中国国家自然科学基金;
关键词
Iron nanoparticles; Reduced graphene oxide; Peroxidase-like activity; H2O2; Glucose; PEROXIDASE-LIKE ACTIVITY; CORE-SHELL STRUCTURE; COLORIMETRIC DETECTION; ARTIFICIAL ENZYMES; MAGNETIC NANOPARTICLES; CATALYTIC-ACTIVITY; GLUCOSE DETECTION; ROOM-TEMPERATURE; GRAPHITE OXIDE; RAMAN-SPECTRA;
D O I
10.1016/j.jallcom.2015.03.176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of enzyme-mimetic catalysts with sustainability and environmental benignancy has gained considerable attention with the growing demands for large-scale applications in recent years. Here, we demonstrate that the reduced graphene oxide (RGO)-iron nanoparticles (INs) can be utilized as the highly active and cost-effective enzyme-mimetic catalysts for the first time, which have been successfully synthesized by a facile iron-self-catalysis process at room temperature. Benefitting from synergetic effects between RGO and INs, the RGO-INs could efficiently catalyze the oxidization of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a typical color reaction, showing the much better peroxidase-like activity than that of each individual part. The mechanistic insight into the enhanced peroxidase-like activity of the RGO-INs was investigated systematically. On the basis of the enzyme-mimetic activity of the RGO-INs, the simple, sensitive, selective and cost-effective colorimetric assays for the detection of hydrogen peroxide and glucose with naked eyes were successfully established. The RGO-INs showed several prominent advantages, such as facile preparation, low cost, tunability in catalytic activity, and low detection limit, over natural peroxidase or other nanomaterial-based alternatives, holding great potential as enzymatic mimics for biosensing applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:470 / 477
页数:8
相关论文
共 52 条
[1]   MIL-53(Fe): A Metal-Organic Framework with Intrinsic Peroxidase-Like Catalytic Activity for Colorimetric Biosensing [J].
Ai, Lunhong ;
Li, Lili ;
Zhang, Caihong ;
Fu, Jian ;
Jiang, Jing .
CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (45) :15105-15108
[2]   Core-Shell Structure Dependent Reactivity of Fe@Fe2O3 Nanowires on Aerobic Degradation of 4-Chlorophenol [J].
Ai, Zhihui ;
Gao, Zhiting ;
Zhang, Lizhi ;
He, Weiwei ;
Yin, Jun Jie .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (10) :5344-5352
[3]   Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets [J].
Akhavan, O. .
CARBON, 2015, 81 :158-166
[4]   V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity [J].
Andre, Rute ;
Natalio, Filipe ;
Humanes, Madalena ;
Leppin, Jana ;
Heinze, Katja ;
Wever, Ron ;
Schroeder, H. -C. ;
Mueller, Werner E. G. ;
Tremel, Wolfgang .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (03) :501-509
[5]   Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity [J].
Cai, Kai ;
Lv, Zhicheng ;
Chen, Kun ;
Huang, Liang ;
Wang, Jing ;
Shao, Feng ;
Wang, Yanjun ;
Han, Heyou .
CHEMICAL COMMUNICATIONS, 2013, 49 (54) :6024-6026
[6]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[7]   Peroxidase mimic activity of hematite iron oxides (α-Fe2O3) with different nanostructres [J].
Chaudhari, Kiran N. ;
Chaudhari, Nitin K. ;
Yu, Jong-Sung .
CATALYSIS SCIENCE & TECHNOLOGY, 2012, 2 (01) :119-124
[8]   Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities [J].
Chen, Hongyu ;
Li, Yang ;
Zhang, Fengbao ;
Zhang, Guoliang ;
Fan, Xiaobin .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (44) :17658-17661
[9]   Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose [J].
Chen, Wei ;
Chen, Juan ;
Feng, Ye-Bin ;
Hong, Lei ;
Chen, Qi-Ying ;
Wu, Ling-Feng ;
Lin, Xin-Hua ;
Xia, Xing-Hua .
ANALYST, 2012, 137 (07) :1706-1712
[10]   Fe-Co bimetallic alloy nanoparticles as a highly active peroxidase mimetic and its application in biosensing [J].
Chen, Yujin ;
Cao, Haiyan ;
Shi, Wenbing ;
Liu, Hong ;
Huang, Yuming .
CHEMICAL COMMUNICATIONS, 2013, 49 (44) :5013-5015