2-recognizeable classes of Leibniz algebras

被引:4
作者
Burch, Tiffany [1 ]
Harris, Meredith [1 ]
McAlister, Allison [1 ]
Rogers, Elyse [2 ]
Stitzinger, Ernie [1 ]
Sullivan, S. McKay [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Surrey, Guildford GU2 5XH, Surrey, England
基金
美国国家科学基金会;
关键词
2-recognizeable; Strongly solvable; Supersolvable; Leibniz algebras; THEOREMS;
D O I
10.1016/j.jalgebra.2014.10.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for fields that are of characteristic 0 or algebraically closed of characteristic greater than 5, that certain classes of Leibniz algebras are 2-recognizeable. These classes are solvable, strongly solvable and supersolvable. These same results hold in Lie algebras and in general for groups. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:506 / 513
页数:8
相关论文
共 12 条
[1]  
Ayupov Sh.A., 1998, P C TASHK KLUW, P1
[2]   Schunck Classes of Soluble Leibniz Algebras [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (11) :4046-4065
[3]   SOME THEOREMS ON LEIBNIZ ALGEBRAS [J].
Barnes, Donald W. .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (07) :2463-2472
[4]   SOME THEOREMS ON SATURATED HOMOMORPHS OF SOLUBLE LIE ALGEBRAS [J].
BARNES, DW ;
NEWELL, ML .
MATHEMATISCHE ZEITSCHRIFT, 1970, 115 (03) :179-&
[5]  
Bosko L., 2011, INVOLVE, V4, P293, DOI [10.2140/involve.2011.4.293, DOI 10.2140/involve.2011.4.293]
[6]   Two generator subalgebras of Lie algebras [J].
Bowman, Kevin ;
Towers, David A. ;
Varea, Vicente R. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (05) :429-438
[7]   THE THEORY OF FORMATIONS CLOSED IN REGARD TO SUBGROUPS - FINITE VARIETIES [J].
BRANDL, R .
JOURNAL OF ALGEBRA, 1981, 73 (01) :1-22
[8]   ON FINITE ABELIAN-BY-NILPOTENT GROUPS [J].
BRANDL, R .
JOURNAL OF ALGEBRA, 1984, 86 (02) :439-444
[9]  
Elduque A., 1986, COMMUN ALGEBRA, V14, P311
[10]   SOME FINITE VARIETIES OF LIE-ALGEBRAS [J].
MONEYHUN, K ;
STITZINGER, E .
JOURNAL OF ALGEBRA, 1991, 143 (01) :173-178