Indirect Band Gap in Scrolled MoS2 Monolayers

被引:9
|
作者
Na, Jeonghyeon [1 ]
Park, Changyeon [1 ]
Lee, Chang Hoi [1 ]
Choi, Won Ryeol [1 ]
Choi, Sooho [2 ]
Lee, Jae-Ung [3 ]
Yang, Woochul [4 ]
Cheong, Hyeonsik [5 ]
Campbell, Eleanor E. B. [6 ,7 ]
Jhang, Sung Ho [1 ]
机构
[1] Konkuk Univ, Sch Phys, Seoul 05029, South Korea
[2] Inst Basic Sci, Ctr Integrated Nanostruct Phys, Suwon 16419, South Korea
[3] Ajou Univ, Dept Phys, Suwon 16499, South Korea
[4] Dongguk Univ, Dept Phys, Seoul 04620, South Korea
[5] Sogang Univ, Dept Phys, Seoul 04107, South Korea
[6] Univ Edinburgh, Sch Chem, EaStCHEM, David Brewster Rd, Edinburgh EH9 3FJ, Midlothian, Scotland
[7] Ehwa Womans Univ, Dept Phys, Seoul 03760, South Korea
关键词
rolled structure; 1D structure; MoS2; scrolled MoS2; band gap; ionic liquid gating; NANOSCROLLS; PHOTOLUMINESCENCE; EVOLUTION;
D O I
10.3390/nano12193353
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MoS2 nanoscrolls that have inner core radii of similar to 250 nm are generated from MoS2 monolayers, and the optical and transport band gaps of the nanoscrolls are investigated. Photoluminescence spectroscopy reveals that a MoS2 monolayer, originally a direct gap semiconductor (similar to 1.85 eV (optical)), changes into an indirect gap semiconductor (similar to 1.6 eV) upon scrolling. The size of the indirect gap for the MoS2 nanoscroll is larger than that of a MoS2 bilayer (similar to 1.54 eV), implying a weaker interlayer interaction between concentric layers of the MoS2 nanoscroll compared to Bernal-stacked MoS2 few-layers. Transport measurements on MoS2 nanoscrolls incorporated into ambipolar ionic-liquid-gated transistors yielded a band gap of similar to 1.9 eV. The difference between the transport and optical gaps indicates an exciton binding energy of 0.3 eV for the MoS2 nanoscrolls. The rolling up of 2D atomic layers into nanoscrolls introduces a new type of quasi-1D nanostructure and provides another way to modify the band gap of 2D materials.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Efficient Excitonic Photoluminescence in Direct and Indirect Band Gap Mono layer MoS2
    Steinhoff, A.
    Kim, J. -H.
    Jahnke, F.
    Roesner, M.
    Kim, D. -S.
    Lee, C.
    Han, G. H.
    Jeong, M. S.
    Wehling, T. O.
    Gies, C.
    NANO LETTERS, 2015, 15 (10) : 6841 - 6847
  • [2] Indirect-to-direct band gap crossover of single walled MoS2 nanotubes
    Hisama, Kaoru
    Maruyama, Mina
    Chiashi, Shohei
    Maruyama, Shigeo
    Okada, Susumu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2021, 60 (06)
  • [3] Indirect-direct band gap transition through electric tuning in bilayer MoS2
    Zhang, Z. Y.
    Si, M. S.
    Wang, Y. H.
    Gao, X. P.
    Sung, Dongchul
    Hong, Suklyun
    He, Junjie
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (17):
  • [4] The indirect-direct band gap tuning in armchair MoS2 nanoribbon by edge passivation
    Wang, Rui
    Zhou, Xiaoyu
    Xu, Xiaoyong
    Hu, Jingguo
    Pan, Jing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (09)
  • [5] Band gap engineering of MoS2 upon compression
    Lopez-Suarez, Miquel
    Neri, Igor
    Rurali, Riccardo
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (16)
  • [6] Effect of strain on the band gap of monolayer MoS2
    Sah, Raj K.
    Tang, Hong
    Shahi, Chandra
    Ruzsinszky, Adrienn
    Perdew, John P.
    PHYSICAL REVIEW B, 2024, 110 (14)
  • [7] S-Vacancy induced indirect-to-direct band gap transition in multilayer MoS2
    Zhu, Bingyu
    Lang, Junyu
    Hu, Yun Hang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (44) : 26005 - 26014
  • [8] Structural characteristic correlated to the electronic band gap in MoS2
    Chu, Shengqi
    Park, Changyong
    Shen, Guoyin
    PHYSICAL REVIEW B, 2016, 94 (02)
  • [9] The modulation of the TiAlSiN coating on the band gap of monolayer MoS2
    Wang, R.
    Jin, K.
    Liu, D. M.
    Su, K.
    SURFACE ENGINEERING, 2021, 37 (04) : 505 - 513
  • [10] A natural indirect-to-direct band gap transition in artificially fabricated MoS2 and MoSe2 flowers
    Zhou, Jun
    Cui, Juan
    Du, Shuo
    Zhao, Zihan
    Guo, Jianfeng
    Li, Songyang
    Zhang, Weifeng
    Liu, Nan
    Li, Xiaotian
    Bai, Qinghu
    Guo, Yang
    Mi, Shuo
    Cheng, Zhihai
    He, Lin
    Nie, J. C.
    Yang, Yu
    Dou, Ruifen
    NANOSCALE, 2023, 15 (17) : 7792 - 7802