Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection

被引:29
|
作者
Piltti, Katja M. [1 ,2 ,3 ]
Cummings, Brian J. [1 ,2 ,3 ,4 ]
Carta, Krystal [1 ]
Manughian-Peter, Ayla [1 ]
Worne, Colleen L. [1 ]
Singh, Kulbir [1 ]
Ong, Danier [1 ]
Maksymyuk, Yuriy [1 ]
Khine, Michelle [5 ]
Anderson, Aileen J. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Irvine, Sue & Bill Gross Stem Cell Ctr, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Phys & Med Rehabil, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Inst Memory Impairments & Neurol Disorders, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Anat & Neurobiol, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Biomed Engn, Irvine, CA 92697 USA
关键词
Human neural stem cell; Live-cell imaging; Single-cell tracking; Fate mapping; Cell lineage decision; Cell cycle; NERVOUS-SYSTEM; FATE; DIFFERENTIATION; DIVISION; BEHAVIOR; ZONE;
D O I
10.1016/j.ymeth.2017.10.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Neural stem cell (NSC) cultures have been considered technically challenging for time-lapse analysis due to high motility, photosensitivity, and growth at confluent densities. We have tested feasibility of longterm live-cell time-lapse analysis for NSC migration and differentiation studies. Here, we describe a method to study the dynamics of cell cycle, migration, and lineage selection in cultured multipotent mouse or human NSCs using single-cell tracking during a long-term, 7-14 day live-cell time-lapse analysis. We used in-house made PDMS inserts with five microwells on a glass coverslip petri-dish to constrain NSC into the area of acquisition during long-term live-cell imaging. In parallel, we have defined image acquisition settings for single-cell tracking of cell cycle dynamics using Fucci-reporter mouse NSC for 7 days as well as lineage selection and migration using human NSC for 14 days. Overall, we show that adjustments of live-cell analysis settings can extend the time period of single-cell tracking in mouse or human NSC from 24-72 h up to 7-14 days and potentially longer. However, we emphasize that experimental use of repeated fluorescence imaging will require careful consideration of controls during acquisition and analysis. (C) 2017 Published by Elsevier Inc.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 26 条
  • [1] Label free, quantitative single-cell fate tracking of time-lapse movies
    Caldon, C. Elizabeth
    Burgess, Andrew
    METHODSX, 2019, 6 : 2468 - 2475
  • [2] Live-Cell Imaging of the Life Cycle of Bacterial Predator Bdellovibrio bacteriovorus using Time-Lapse Fluorescence Microscopy
    Makowski, Lukasz
    Trojanowski, Damian
    Zakrzewska-Czerwinska, Jolanta
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (159):
  • [3] Time-lapse imaging of cell cycle dynamics during development in living cardiomyocyte
    Hashimoto, Hisayuki
    Yuasa, Shinsuke
    Tabata, Hidenori
    Tohyama, Shugo
    Hayashiji, Nozomi
    Hattori, Fumiyuki
    Muraoka, Naoto
    Egashira, Toru
    Okata, Shinichiro
    Yae, Kojiro
    Seki, Tomohisa
    Nishiyama, Takahiko
    Nakajima, Kazunori
    Sakaue-Sawano, Asako
    Miyawaki, Atsushi
    Fukuda, Keiichi
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2014, 72 : 241 - 249
  • [4] CausalXtract, a flexible pipeline to extract causal effects from live-cell time-lapse imaging data
    Simon, Franck
    Comes, Maria Colomba
    Tocci, Tiziana
    Dupuis, Louise
    Cabeli, Vincent
    Lagrange, Nikita
    Mencattini, Arianna
    Parrini, Maria Carla
    Martinelli, Eugenio
    Isambert, Herve
    ELIFE, 2025, 13
  • [5] Live Imaging Reveals Cerebellar Neural Stem Cell Dynamics and the Role of VNUT in Lineage Progression
    Paniagua-Herranz, Lucia
    Menendez-Mendez, Aida
    Gomez-Villafuertes, Rosa
    Olivos-Ore, Luis A.
    Biscaia, Miguel
    Gualix, Javier
    Perez-Sen, Raquel
    Delicado, Esmerilda G.
    Artalejo, Antonio R.
    Teresa Miras-Portugal, Maria
    Ortega, Felipe
    STEM CELL REPORTS, 2020, 15 (05): : 1080 - 1094
  • [6] Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations
    Gomez-Villafuertes, Rosa
    Paniagua-Herranz, Lucia
    Gascon, Sergio
    de Agustin-Duran, David
    Ferreras, Maria de la O.
    Gil-Redondo, Juan Carlos
    Jose Queipo, Maria
    Menendez-Mendez, Aida
    Perez-Sen, Raquel
    Delicado, Esmerilda G.
    Gualix, Javier
    Costa, Marcos R.
    Schroeder, Timm
    Teresa Miras-Portugal, Maria
    Ortega, Felipe
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2017, (130):
  • [7] Automated live-cell single-molecule tracking in dynamics probing lineage-determining function
    Walther, Nike
    Anantakrishnan, Sathvik
    Graham, Thomas G. W.
    Dailey, Gina M.
    Tjian, Robert
    Darzacq, Xavier
    CELL REPORTS, 2024, 43 (11):
  • [8] Measuring single-cell gene expression dynamics in bacteria using fluorescence time-lapse microscopy
    Young, Jonathan W.
    Locke, James C. W.
    Altinok, Alphan
    Rosenfeld, Nitzan
    Bacarian, Tigran
    Swain, Peter S.
    Mjolsness, Eric
    Elowitz, Michael B.
    NATURE PROTOCOLS, 2012, 7 (01) : 80 - 88
  • [9] DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy
    Zargari, Abolfazl
    Lodewijk, Gerrald A.
    Mashhadi, Najmeh
    Cook, Nathan
    Neudorf, Celine W.
    Araghbidikashani, Kimiasadat
    Hays, Robert
    Kozuki, Sayaka
    Rubio, Stefany
    Hrabeta-Robinson, Eva
    Brooks, Angela
    Hinck, Lindsay
    Shariati, S. Ali
    CELL REPORTS METHODS, 2023, 3 (06):
  • [10] Resolving immune cells with patrolling behaviour by magnetic resonance time-lapse single cell tracking
    Masthoff, Max
    Freppon, Felix Noah
    Zondler, Lisa
    Wilken, Enrica
    Wachsmuth, Lydia
    Niemann, Silke
    Schwarz, Christian
    Fredrich, Ina
    Havlas, Asli
    Block, Helena
    Gerwing, Mirjam
    Helfen, Anne
    Heindel, Walter
    Zarbock, Alexander
    Wildgruber, Moritz
    Faber, Cornelius
    EBIOMEDICINE, 2021, 73