Proof of some conjectural congruences modulo p3

被引:7
作者
Mao, Guo-Shuai [1 ]
Li, Danrui [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
关键词
Congruences; Apery-like numbers; harmonic numbers; Euler numbers; BERNOULLI;
D O I
10.1080/10236198.2022.2046739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly prove the following conjectures of Z.-H. Sun [New congruences involving Apery-like numbers, preprint (2020). Available at arXiv:2004.07172v2]: Let p > 3 be a prime. Then G(2p) G(2) + 3072(-1)((p-1)/2)p(2)E(p-3) (mod p(3)), G(2p-1) (-1)((p-1)/2)16(4(p-1))G(1) + 164p(2)E(p-3) (mod p(3)), G(3p) G(3) + 94464(-1)(p-1/2) p(2)E(p-3) (mod p(3)). where G(n) = Sigma(n)(k=0) (2k k)(2) (2n-2k n-k)4(n-k), and E-n stands for the nth Euler number.
引用
收藏
页码:496 / 509
页数:14
相关论文
共 13 条
[11]   On congruences related to central binomial coefficients [J].
Sun, Zhi-Wei .
JOURNAL OF NUMBER THEORY, 2011, 131 (11) :2219-2238
[12]  
Tauraso R, 2010, ELECTRON J COMB, V17
[13]  
Zagier D, 2009, CRM PROC & LECT NOTE, V47, P349