Proof of some conjectural congruences modulo p3

被引:7
作者
Mao, Guo-Shuai [1 ]
Li, Danrui [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
关键词
Congruences; Apery-like numbers; harmonic numbers; Euler numbers; BERNOULLI;
D O I
10.1080/10236198.2022.2046739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly prove the following conjectures of Z.-H. Sun [New congruences involving Apery-like numbers, preprint (2020). Available at arXiv:2004.07172v2]: Let p > 3 be a prime. Then G(2p) G(2) + 3072(-1)((p-1)/2)p(2)E(p-3) (mod p(3)), G(2p-1) (-1)((p-1)/2)16(4(p-1))G(1) + 164p(2)E(p-3) (mod p(3)), G(3p) G(3) + 94464(-1)(p-1/2) p(2)E(p-3) (mod p(3)). where G(n) = Sigma(n)(k=0) (2k k)(2) (2n-2k n-k)4(n-k), and E-n stands for the nth Euler number.
引用
收藏
页码:496 / 509
页数:14
相关论文
共 13 条
[1]  
Almkvist G., 2006, MIRROR SYMMETRY, V38, P481
[2]  
Apery R., 1979, ASTERISQUE, V61, P11
[3]   ANOTHER CONGRUENCE FOR THE APERY NUMBERS [J].
BEUKERS, F .
JOURNAL OF NUMBER THEORY, 1987, 25 (02) :201-210
[4]   On Two Supercongruences Involving Almkvist-Zudilin Sequences [J].
Liu, Ji-Cai ;
Ni, He-Xia .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (04) :1211-1219
[5]  
Mao G.-S., 2021, PROOF SOME CONGRUENC
[6]  
Morley F., 1895, Annals of Math., V9, P168
[7]  
Sun, 2020, CONGRUENCES 2 TYPE A
[8]   Congruences concerning Bernoulli numbers and Bernoulli polynomials [J].
Sun, ZH .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :193-223
[9]   Congruences involving Bernoulli and Euler numbers [J].
Sun, Zhi-Hong .
JOURNAL OF NUMBER THEORY, 2008, 128 (02) :280-312
[10]   Super congruences and Euler numbers [J].
Sun Zhi-Wei .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (12) :2509-2535