Lung Cancer Segmentation With Transfer Learning: Usefulness of a Pretrained Model Constructed From an Artificial Dataset Generated Using a Generative Adversarial Network

被引:23
作者
Nishio, Mizuho [1 ,2 ]
Fujimoto, Koji [1 ,3 ]
Matsuo, Hidetoshi [2 ]
Muramatsu, Chisako [4 ]
Sakamoto, Ryo [1 ,5 ]
Fujita, Hiroshi [6 ]
机构
[1] Kyoto Univ, Dept Diagnost Imaging & Nucl Med, Grad Sch Med, Kyoto, Japan
[2] Kobe Univ Hosp, Dept Radiol, Kobe, Hyogo, Japan
[3] Kyoto Univ, Dept Real World Data Res & Dev, Grad Sch Med, Hikone, Japan
[4] Shiga Univ, Fac Data Sci, Gifu, Japan
[5] Kyoto Univ Hosp, Preempt Med & Lifestyle Related Dis Res Ctr, Kyoto, Japan
[6] Gifu Univ, Fac Engn, Dept Elect Elect & Comp Engn, Gifu, Japan
来源
FRONTIERS IN ARTIFICIAL INTELLIGENCE | 2021年 / 4卷
关键词
lung cancer; lung nodule; segmentation; computed tomography; deep learning; generative adversarial network 3;
D O I
10.3389/frai.2021.694815
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: The purpose of this study was to develop and evaluate lung cancer segmentation with a pretrained model and transfer learning. The pretrained model was constructed from an artificial dataset generated using a generative adversarial network (GAN). Materials and Methods: Three public datasets containing images of lung nodules/lung cancers were used: LUNA16 dataset, Decathlon lung dataset, and NSCLC radiogenomics. The LUNA16 dataset was used to generate an artificial dataset for lung cancer segmentation with the help of the GAN and 3D graph cut. Pretrained models were then constructed from the artificial dataset. Subsequently, the main segmentation model was constructed from the pretrained models and the Decathlon lung dataset. Finally, the NSCLC radiogenomics dataset was used to evaluate the main segmentation model. The Dice similarity coefficient (DSC) was used as a metric to evaluate the segmentation performance. Results: The mean DSC for the NSCLC radiogenomics dataset improved overall when using the pretrained models. At maximum, the mean DSC was 0.09 higher with the pretrained model than that without it. Conclusion: The proposed method comprising an artificial dataset and a pretrained model can improve lung cancer segmentation as confirmed in terms of the DSC metric. Moreover, the construction of the artificial dataset for the segmentation using the GAN and 3D graph cut was found to be feasible.
引用
收藏
页数:10
相关论文
共 38 条
[1]   MedGAN: Medical image translation using GANs [J].
Armanious, Karim ;
Jiang, Chenming ;
Fischer, Marc ;
Kuestner, Thomas ;
Nikolaou, Konstantin ;
Gatidis, Sergios ;
Yang, Bin .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 79
[2]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[3]   The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer [J].
Bashir, Usman ;
Azad, Gurdip ;
Siddique, Muhammad Musib ;
Dhillon, Saana ;
Patel, Nikheel ;
Bassett, Paul ;
Landau, David ;
Goh, Vicky ;
Cook, Gary .
EJNMMI RESEARCH, 2017, 7
[4]  
Cancer Imaging Archive, 2021, NSCLC RAD CANC IM AR
[5]   HSN: Hybrid Segmentation Network for Small Cell Lung Cancer Segmentation [J].
Chen, Wei ;
Wei, Haifeng ;
Peng, Suting ;
Sun, Jiawei ;
Qiao, Xu ;
Liu, Boqiang .
IEEE ACCESS, 2019, 7 :75591-75603
[6]   Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing [J].
Chlebus, Grzegorz ;
Schenk, Andrea ;
Moltz, Jan Hendrik ;
van Ginneken, Bram ;
Hahn, Horst Karl ;
Meine, Hans .
SCIENTIFIC REPORTS, 2018, 8
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]   Automatic multiorgan segmentation in thorax CT images using U-net-GAN [J].
Dong, Xue ;
Lei, Yang ;
Wang, Tonghe ;
Thomas, Matthew ;
Tang, Leonardo ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2019, 46 (05) :2157-2168
[9]   Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results [J].
Gevaert, Olivier ;
Xu, Jiajing ;
Hoang, Chuong D. ;
Leung, Ann N. ;
Xu, Yue ;
Quon, Andrew ;
Rubin, Daniel L. ;
Napel, Sandy ;
Plevritis, Sylvia K. .
RADIOLOGY, 2012, 264 (02) :387-396
[10]  
Ginneken B. V., 2016, LUNG NODULE ANAL