Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches

被引:34
作者
Kim, HJ [1 ]
Hahn, IS
Hwang, MJ
Jain, RK
Kang, UK
Kim, SC
Kim, SK
Kim, TY
Kim, YD
Kwon, YJ
Lee, HS
Lee, JH
Lee, JI
Lee, MH
Lim, DS
Noh, SH
Park, H
Park, IH
Seo, ES
Won, E
Yang, MS
Yu, I
机构
[1] Yonsei Univ, Dept Phys, Seoul 120749, South Korea
[2] Ewha Womans Univ, Dept Sci Educ, Seoul 120750, South Korea
[3] Sungkyunkwan Univ, Dept Phys, Suwon 440746, South Korea
[4] Univ Maryland, Dept Phys, IPST, College Pk, MD 20742 USA
[5] Sejong Univ, Dept Phys, Seoul 143747, South Korea
[6] Seoul Natl Univ, Sch Phys, Seoul 151742, South Korea
关键词
dark matter; underground; neutron background; active shielding; GEANT4;
D O I
10.1016/j.astropartphys.2003.09.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Searches for weakly interacting massive particles (WIMPs) can be carried out based on the detection of nuclear recoil energy in CsI(Tl) crystals. It is crucial to minimize the neutron background as well as to fully understand the remaining background sources through adequate shielding when using the pulse shape discrimination method for WIMP detection. We have measured the neutron flux at 350 m minimum depth, where the CheongPyung underground laboratory (CPL) is located, to be 3.00 +/- 0.02 (stat.) +/-0.05 (syst.) x 10(-5) neutrons/cm(2)/s with the neutron energy in the range 1.5 < E-n < 6 MeV. Using the GEANT4 simulation, we have demonstrated that the neutron flux can be reduced sufficiently for dark matter searches with 30 cm of polyethylene passive shield and 20 cm of BC501A liquid scintillator active shield. The neutron induced background at a few keV energy deposit in CsI crystal is less than 0.001 counts/keV/ kg/day. An active shield not only reduces the neutron background but can also reduce the uncertainty in the neutron background estimation. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:549 / 557
页数:9
相关论文
共 21 条
[1]   Searching for cold dark matter in the Southern Hemisphere. The experiment at Sierra Grande [J].
Abriola, D ;
Avignone, FT ;
Brodzinski, RL ;
Collar, JI ;
DiGregorio, DE ;
Farach, HA ;
Garcia, E ;
Gattone, AO ;
Hasenbalg, F ;
Huck, H ;
Miley, HS ;
Morales, A ;
Morales, J ;
deSolorzano, AO ;
Puimedon, J ;
Reeves, JH ;
Saenz, C ;
Salinas, A ;
Sarsa, ML ;
Tomasi, D ;
Urteaga, I ;
Villar, JA .
ASTROPARTICLE PHYSICS, 1996, 6 (01) :63-69
[2]  
AHN HJ, 2001, KIMS COLLABORATION
[3]  
[Anonymous], 1964, THEORY PRACTICE SCIN
[4]   New limits on WIMP search with large-mass low-radioactivity NaI(Tl) set-up at Gran Sasso [J].
Bernabei, R ;
Belli, P ;
Landoni, V ;
Montecchia, F ;
DiNicolantonio, W ;
Incicchitti, A ;
Prosperi, D ;
Bacci, C ;
Dai, CJ ;
Ding, LK ;
Kuang, HH ;
Ma, JM ;
Angelone, M ;
Batistoni, P ;
Pillon, M .
PHYSICS LETTERS B, 1996, 389 (04) :757-766
[5]   ROOT - An object oriented data analysis framework [J].
Brun, R ;
Rademakers, F .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1997, 389 (1-2) :81-86
[6]   Neutron background measurements in the underground laboratory of Modane [J].
Chazal, V ;
Brissot, R ;
Cavaignac, JF ;
Chambon, B ;
de Jesus, M ;
Drain, D ;
Giraud-Heraud, Y ;
Pastor, C ;
Stutz, A ;
Vagneron, L .
ASTROPARTICLE PHYSICS, 1998, 9 (02) :163-172
[7]   A MULTIDIMENSIONAL UNFOLDING METHOD BASED ON BAYES THEOREM [J].
DAGOSTINI, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 362 (2-3) :487-498
[8]   NEW ELECTRONICALLY BLACK NEUTRON DETECTORS [J].
DRAKE, DM ;
FELDMAN, WC .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1986, 247 (03) :576-582
[9]   DETECTABILITY OF CERTAIN DARK-MATTER CANDIDATES [J].
GOODMAN, MW ;
WITTEN, E .
PHYSICAL REVIEW D, 1985, 31 (12) :3059-3063
[10]  
HASHEMINEZHAD SR, 1995, NUCL INSTRUM METH A, V357, P52